
GB
ROBO Pro

1

T A B L E O F C O N T E N T S
4.5 Tango 2: Communication through Wi-Fi,

Bluetooth or RF data link 43

1 Introduction – controlling
fischertechnik models with ROBO
Pro .. 4

1.1 Installation of ROBO Pro 4
1.2 Installing the USB driver 5

1.2.1 USB driver installation under
Windows Vista, 7, 8 and 10 6

1.2.2 USB driver installation under
Windows XP 7

1.3 First Steps 9

2 A quick hardware test before
programming 11

2.1 Connecting the Interface to the PC.... 11
2.2 Getting the right connection – Interface

settings..................................... 11
2.3 Wrong connection: no connection to the

Interface!? 12
2.4 Is everything working-the Interface test13

3 Level 1: Your first control program. 15
3.1 Creating a new program 15
3.2 The elements of a control program 16
3.3 Inserting, moving and modifying

program elements 16
3.4 Linking program elements 19
3.5 Testing your first control program 20
3.6 Other program elements 22

3.6.1 Time delay 22
3.6.2 Wait for input 23
3.6.3 Pulse counter 23
3.6.4 Counter loop 24

3.7 Online and download operation—what’s
the difference? 24

3.8 Tips and Tricks 26

4 Level 2: Working with subprograms 28
4.1 Your first subprogram 29
4.2 The subprogram library 33

4.2.1 Using the Library 33
4.2.2 Using your own library 33

4.3 Editing subprogram symbols 34
4.4 Tango 35

4.4.1 Motor control with pulse switches37
4.4.2 Motor control with encoder motors40
4.4.3 Tango main program 41

4.5.1 Radio settings for the Robo

interface.............................. 46
4.5.2 Bluetooth settings for the TXT or

TX Controller 49

5 Level 3: Variables, panels & Co 51
5.1 Variables and commands 51
5.2 Variables and multiple processes 53
5.3 Panels 54
5.4 Timers 57
5.5 Command inputs for subprograms..... 58
5.6 Lists (Arrays) 61
5.7 Operators 62

6 Level 4: User defined commands ... 66
6.1 Processing of commands in a process 66
6.2 The command filter 67
6.3 Sending arbitrary commands to sub-

programs 68

7 Controlling several Interfaces 70
7.1 Controlling Extensions 70
7.2 TXT Controller, TX Controller and

ROBO Interface together 70
7.3 Interface assignments in subprograms72
7.4 Tips and Tricks............................ 73
7.5 Changing the ROBO Interface serial

number 73

8 Program element overview 75
8.1 Basic elements (Level 1) 75

8.1.1 Start 75
8.1.2 End 75
8.1.3 Digital Branch 75
8.1.4 Analog Branch 76
8.1.5 Time delay 77
8.1.6 Motor output......................... 77
8.1.7 Encoder Motor (Level 1) 78
8.1.8 Lamp output (Level 2) 79
8.1.9 Wait for input 80
8.1.10 Pulse counter 81
8.1.11 Counter loop 82
8.1.12 Sound 82

8.2 Send, Receive (Level 2-4) 83
8.2.1 Sender (Level2) 83
8.2.2 Receiver (Branch when command

is received, Level 2) 84

GB
ROBOPro

2

8.2.3 Receiver (Level 3) 85
8.2.4 Wait for command (Level 4) 86
8.2.5 Command Filter (Level 4)......... 87
8.2.6 Exchange Message (Level 4) 87
8.2.7 I2C Write (Level 4) 87
8.2.8 I2C Read (Level 4) 89

8.3 Subprogram I/O (Level 2-3) 89
8.3.1 Subprogram entry (Level 2) 90
8.3.2 Subprogram exit (Level 2) 90
8.3.3 Subprogram command input …

(Level 3) 90
8.3.4 Subprogram command output

(Level 3) 91
8.4 Variable, List, ... (Level 3) 91

8.4.1 Variable (global) 91
8.4.2 Local variables 92
8.4.3 Constant 93
8.4.4 Timer variable 93
8.4.5 List 94

8.5 Commands (Level 3) 96
8.5.1 = (Assignment) 97
8.5.2 + (Plus) 97
8.5.3 – (Minus) 97
8.5.4 Right 97
8.5.5 Left 97
8.5.6 Stop 97
8.5.7 On 98
8.5.8 Off 98
8.5.9 Text................................... 98
8.5.10 Append value 98
8.5.11 Delete value(s) 98
8.5.12 Exchange values 99

8.6 Compare, wait for, (Level 3) 99
8.6.1 Branch (with data input)........... 99
8.6.2 Comparison with fixed value 100
8.6.3 Compare............................ 100
8.6.4 Time delay 101
8.6.5 Wait for 101
8.6.6 Pulse counter 102

8.7 Interface inputs/outputs 102
8.7.1 Universal input..................... 102
8.7.2 Counter input 103
8.7.3 Motor position reached 104
8.7.4 Motor output 105
8.7.5 Lamp output 106
8.7.6 Panel input 107
8.7.7 Panel Output 107
8.7.8 Camera Input 108
8.7.9 IR Input (TXT Controller)......... 108

8.8 Operators 109

8.8.1 Arithmetic operators.............. 110
8.8.2 Comparative operators (relational

operators) 110
8.8.3 Logical operators 111
8.8.4 Bit operators 112
8.8.5 Functions 112

8.9 ROBO Interface 114
8.9.1 Digital Branch (ROBO Interface).114
8.9.2 Analog Branch (ROBO Interface)114
8.9.3 Wait for input (ROBO Interface).115
8.9.4 Pulse counter (ROBO Interface).115
8.9.5 Digital input (ROBO Interface) ...116
8.9.6 Analog input (ROBO Interface)...117
8.9.7 IR Input (ROBO Interface) 118

9 Panel elements and panels: overview 120
9.1 Displays 120

9.1.1 Meter 120
9.1.2 Text display 121
9.1.3 Display lamp....................... 122

9.2 Control elements 123
9.2.1 Button 123
9.2.2 Slider 124

10 Drawing functions..................... 125

11 Camera functions 127
11.1 Camera window 127
11.2 Camera viewer 127
11.3 Camera sensor fields 128

11.3.1 Color detector 128
11.3.2 Movement detector 129
11.3.3 Line finder.......................... 129
11.3.4 Ball finder 131
11.3.5 Exclusion object 132

12 TXT and TX Controller functions... 133
12.1 Installation of the ROBO TX Controller

USB-driver 133
12.2 Environment (Level 1 and above) 133
12.3 Interface independent programming .134
12.4 Conversion of programs 135
12.5 Universal inputs, sensor type and input

mode 135
12.6 Fast counter inputs and extended motor

control 135
12.6.1 Encoder Motor (Level 1) 136
12.6.2 Extended Motor Control in Level 3.137

12.7 Display 138

13 Working with decimals 140
13.1 Comparing floating point numbers ... 140

GB
ROBO Pro

3

13.2 Displaying floating point numbers 141
13.3 Calculation of Precision 142

Modifications and corrections
made by: Peter King

www.procontechnology.com.au

http://www.procontechnology.com.au/

GB
ROBOPro

4

1 Introduction – controlling fischertechnik models with ROBO Pro

You must have asked yourself, at some time, how robots appear to carry out their allotted tasks as
if controlled by an invisible hand. It’s not just robots, but in many other fields as well, that we
encounter control and automation technology. Including fischertechnik. By chapter three, we will be
designing together a little control program for an automatic garage door, and in doing so you’ll learn
how control problems like this can be solved and tested with the help of the ROBO Pro software for
Windows. ROBO Pro is very simple to operate. Control programs, or more precisely flowcharts (as
well as data flowcharts), as we shall learn can be created using the graphical user interface of
ROBO Pro, almost exclusively by manipulating the computer’s mouse.

In order to be able to control your fischertechnik models through your PC, you will need, as well as
the ROBO Pro control software, an Interface to connect the computer with the model. It transforms
the software commands so that, for example, motors can be controlled and sensor signals can be
processed. The ROBOTICS TXT Controller (item number 522429), the ROBO TX Controller (item
number 500995), the earlier ROBO Interface (item number 93293) and the Intelligent Interface
(item number 30402) are available from fischertechnik. You can use any of these Interfaces with
ROBO Pro. However ROBO Pro only supports the online or passive mode of the Intelligent
Interface. And ROBO Pro no longer supports the very early parallel Interface (item number 30520).

A few words about the layout of this manual. It is divided into two parts. The first part, from
Chapter 1 to Chapter 4, describes the basic procedure for programming with ROBO Pro. This
gives you a lot of information and background knowledge about programming in general and about
how to use the ROBO Pro software.

The second part consists of Chapters 5 to 7, and gives an introduction to the functions needed for
more advanced programs.

Chapters 8 onwards are more for reference. So when you’re familiar with the operation of ROBO
Pro after reading the first part and you need very specific information, here is where you will find a
comprehensive explanation of the individual program elements.

So let’s go! You must already be itching to know what possibilities ROBO Pro gives you for pro-
gramming your fischertechnik models. Have fun!

1.1 Installation of ROBO Pro

System requirements for installing ROBO Pro are:

 a PC with Windows XP, Vista, 7, 8 or 10.

 an available USB interface to connect the ROBOTICS TXT Controller, the ROBO TX Control-
ler or the ROBO Interface (including the ROBO LT Controller).

 Adobe Acrobat Reader to view the ROBOTICS TXT Controller user manual and the informa-
tive accompanying documentation for the different ROBOTICS construction sets.

If you are already familiar with ROBO Pro and only want to find out what new features were
added with the ROBO TX Controller, you should read only Chapter 11: Camera functions of

the manual.

5

GB
ROBOPro

First of all, of course, you must start the computer and wait until the operating system (Windows)
has finished loading. The Controller should only be connected to the computer after successful
installation of the ROBO Pro software. Insert the installation CD into the CD-ROM drive. The
installation program "Setup.exe" on the CD will then be started automatically.

 In the first Welcome window of the installation program you push the Next button.

 The second window, Important Notes, contains important up-to-date notes about installing
the program or about the program itself. Here too, you click on the Next button.

 The third window, License Agreement, displays the ROBO Pro licensing contract. You must
click "Yes" to accept the agreement before you can proceed to the next window with Nex

 In the next window, User Details, please enter your name.

 The next window, Installation Type, allows you to choose between Express Installation
and Customized Installation. With customized installation, you can choose to leave out in-
dividual components of the installation. If you are installing a new version of ROBO Pro over
an older version, and you have modified some of the sample programs in the older version,
you can exclude the sample programs from the customized installation. If you don’t do this,
the modified sample programs will be overwritten without warning. If you select customized
installation and press "Next", an additional window, allowing you to select the components,
will appea

 In the Target directory window you can select the folder or directory path where you want
the ROBO Pro program installed. This will normally be the path C:\Program Files (x86)\
ROBOPro. However, you can also enter another directory.

 When you push the Finish button in the last window, the installation is performed. As soon
as the installation is finished – this normally only takes a few seconds – the program an-
nounces successful installation. If there are problems, an error message is displayed, which
should help you to solve the problem.

1.2 Installing the USB driver

This step takes place automatically if the ROBOTICS TXT Controller, ROBO TX Controller or
ROBO Interface is connected to the USB interface after installation of the ROBO Pro software has
been completed.

Important note regarding the installation of the USB driver

The USB driver can only be installed by a user with PC systems administrator privileges.
Should the installation program advise you that you are not permitted to install the USB driv-
er, have your system administrator install the driver. Otherwise the interfaces will not run via
USB.

6

GB
ROBOPro

In order to install the USB driver, you must first connect the ROBOTICS TXT Controller, the ROBO
TX Controller or the ROBO Interface with a USB cable to your computer and supply it with power.
Windows recognizes automatically that the Interface is connected and displays different messages
depending on the version of the operating system:

1.2.1 USB driver installation under Windows Vista, 7, 8 and 10

The following message appears initially:

If you left-click with your mouse on the message, the following dialog appears:

Searching Windows Update can take several minutes. Since the driver software was pre-
loaded onto the computer when ROBO Pro was installed, you can skip downloading the
Windows Update driver software. Do not cancel the installation process by clicking Close
or else the driver will not be installed. Once the USB driver installation is completed, the
following message appears:

The driver is now installed and the device can be used. Note: The messages shown here are
from Windows 7. The messages may appear slightly different depending on your version of
Windows.

7

GB
ROBOPro

1.2.2 USB driver installation under Windows XP

The installation under Windows XP is very different from the other versions of Windows.
The procedure is therefore described here separately.

Here you must select Install the software automatically and press Next.

8

GB
ROBOPro

Under Windows XP, you may see the following message after pressing "Next":

The USB driver is still being tested by Microsoft. Once testing is completed the driver will be
approved by Microsoft, so that this notice no longer appears. In order to install the driver, press
Proceed with installation.

Finally, the following message will appear:

Press Finish to complete USB driver installation.

9

GB
ROBOPro

1.3 First Steps

Curious? Then simply start the program ROBO Pro. To do this, you click on the Start button on the
task bar and then select Programs or All programs and ROBO Pro. In this folder of the Start
menu you will find the following entries:

The Uninstall entry allows you to uninstall ROBO Pro. The Help entry opens the ROBO Pro Help
file, and the ROBO Pro entry opens the ROBO Pro program. Now select the entry ROBO Pro to
launch the program.

The window has a menu bar and toolbar with various operating buttons above as well as a window
on the left-hand side with program elements. If you see two stacked windows in the left margin,
ROBO Pro is not set on Level 1. To allow the functionality of ROBO Pro to match your growing
knowledge, you can set ROBO Pro from Level 1 for beginners up to Level 5 for experts. Look in
the Level menu to see whether there is a checkmark by Level 1: Beginners. If not, please switch
to level 1.

ROBO Pro is configured to use the ROBOTICS TXT Controller or the ROBO TX Controller as
interface. You can see this by the presence of the button TX/TXT in the toolbar. In Chapter 12.2
Environment you learn how you can switch to the earlier ROBO Interface and what you need to
pay attention to.

Now you may either create a new program file or open an already existing program file. We do not
intend to create a new program file until Chapter 3, when we will write our first control program. To
familiarize ourselves with the user interface, we shall open an already existing sample program. To Open

GB
ROBOPro

10

do this, you click the entry Open in the File menu, or use the Open button in the toolbar. The
sample files are found in the folder C:\Program Files\ROBOPro\Sample Programs.

Open the file \Level3\Motor start stop.rpp:

Here you can see what a simple ROBO Pro program looks like. In programming, control-program
flow charts are created in the program window using program elements from the element window.
The finished flow charts can then be checked before being tested using a connected fischertechnik
Interface. But not too fast: we shall learn programming step-by-step in the following
chapters! Having thus gained your first impression of the user interface, you close the program file
using the Close command in the File menu. You can answer No to the question of whether you
want to save the file.

GB
ROBOPro

11

2 A quick hardware test before programming

Clearly, the Interface must be connected to the PC for us to be able to test the programs we will
later create. But, depending on the Interface used (ROBOTICS TXT Controller, ROBO TX Control-
ler or ROBO–Interface), appropriate interface connection settings must also be made and tested.
We will do this in the coming chapter.

2.1 Connecting the Interface to the PC

This should not be a great problem. The connecting cable supplied with the Interface is connected
to the Interface and to a USB port on the PC.

The connections for these ports are normally found on the back of the computer. The exact place-
ment of the connections is described precisely in the user manual of your PC; please look it up
there. USB connections are also often found on the front of a PC. Don’t forget to give the Interface
a power supply (mains unit or battery). The individual connections of the Interface are described in
detail in the user manual of the respective equipment.

2.2 Getting the right connection – Interface settings

For the connection between the Interface and the PC to function correctly, ROBO Pro must be
configured for the Interface currently in use. To do this, start ROBO Pro using the ROBO Pro entry
on the Start menu under Programs or All programs and ROBO Pro. Then push the COM/USB
on the toolbar. The following window will appear:

Here you can select the port as well as the Interface type.

GB
ROBOPro

12

Once you have selected the appropriate settings, close the window with OK. Now open
the Interface test window with the Test button on the toolbar.

It shows the inputs and outputs available on the Interface. The green bar in the lower left of the
window displays the connection status of the PC to the Interface:

 Connection: Running confirms correct connection to the Interface

 Connection: Stopped indicates that the connection has not been correctly set up and the
PC was unable to establish a connection to the Interface. In this case, the bar will appear red.

To be able to change the Interface or connection settings, you must close the Test window (with
the X in the upper right) and select another port or another Interface type as previously described,
via the COM/USB button in the toolbar.

If you have been able to set up the connection between PC and Interface as described and the
green bar appears, you will be relieved to know you can skip the next section.

If not, perhaps the tips in the next section can help you out.

2.3 Wrong connection: no connection to the Interface!?

If you get the message Stopped with your interface despite having correctly set the port (see
above), you should check the following points. For this purpose, you may need to get advice from
a computer expert:

 Power supply:
Does the Interface have an appropriate power supply? If you are using disposable or re-
chargeable batteries as power supply, the possibility arises that these are flat and no longer

GB
ROBOPro

13

supply sufficient voltage. If the battery voltage falls below 6 V, the ROBO TX Controller’s pro-
cessor may stop working. In this case the display will stop showing any information. If the
voltage is too low, you must replace or, where appropriate, recharge the battery, or, if pos-
sible, test the Interface with a mains power supply.

 Has the USB driver been installed correctly?
You can find this out by checking in the Device Manager in the Windows Control
Panel whether the entry fischertechnik USB ROBO TX Controller appears under connections
(COM and LPT) and functions properly. Should this entry not appear, install the USB driver
again. If an error appears, uninstall the driver (click on the respective entry with your right
mouse but- ton) and install it once again. If the USB driver is not installed automatically, you
can manually install it via the device manager. You can find the drivers for the different
devices in the ROBOPro folder (default: C:\Program Files (x86)\ROBOPro\USB driver install).
Additional help on the latest USB drivers (select the interface TXT, TX, ROBO, LT) and how
to install them manually is available at: www.fischertechnik.de/en/service/downloads/robotics

 Is there a conflict with another device driver on the same port (e.g. a modem)? This driver
may need to be deactivated (see Windows or device handbooks).

 If you still can’t establish a connection to the Interface, then probably either the Interface or
the connection cable is faulty. In this case, you should consult fischertechnik Service (Ad-
dress: see menu: “?” / Information about).

2.4 Is everything working – the Interface test

Once the connection has been correctly set up, you can use the Interface test to test the ROBO TX
Controller and the models connected to it. The test window displays the various inputs and outputs
of the Controller:

 Universal inputs I1—I8
I1—I8 are the universal inputs of the ROBOTICS TXT Controller and the ROBO TX Controller.
This is where different types of sensors can be connected. There are digital and analog sen-
sors. You set the universal inputs depending on the type of sensor you would like to connect.

 Digital sensors can only assume the states 0 and 1, or
Yes and No. By default, both universal inputs are set to
the input type Digital 5kOhm. Switches (mini pushbutton-
switches), as well as phototransistors (light sensors) or
reed-switches (magnetic sensors), can be connected to
these digital inputs.
You can check the functioning of these inputs by con-
necting a mini-sensor (item number 37783) to the

Interface, e.g. to I1 (use contacts 1 and 3 on the switch). As soon as you press the button, a
check-mark appears in the display of I1. If you have connected the switch the other way
around (contacts 1 and 2), the check-mark will appear straight away and disappear when you
press the button.

 The setting Digital 10V is used for the infrared trail sensor.

 The setting Analog 10V can be used for the color sensor or to measure voltages between 0
and 10V such as the supply voltage of the battery pack. The voltage is displayed in mV (milli-
volt).

https://www.fischertechnik.de/en/service/downloads/robotics

GB
ROBOPro

14

 Analog 5kOhm is used for the NTC resistor to measure temperatures and for the photoresis-
tor to measure light. Here the reading is displayed in Ohm (Ω = electrical resistance).

 The setting Distance is used for the ultrasound distance sensor (for the ROBOTICS TXT
Controller and the ROBO TX Controller only the version TX of the distance sensor with 3 pin
connection cable, item number 133009, can be used).

 Counter inputs C1—C4
These inputs allow you to count fast pulses with frequencies of up to 1000 pulses per second.
You can also use them as digital inputs for buttons (not suitable for the trail sensor). If you
connect a button to this input, every push of the button (=pulse) will increase the value of the
counter by 1. This allows you, for example, to let a robot travel a specific distance.

 Motor outputs M1—M4
M1 – M4 are the outputs from the Interface. This is where what are called actuators are con-
nected. These can be, e.g., motors, electromagnets or lamps. The 4 motor outputs can be
controlled in speed and in direction. Speed is controlled using the slide control. You can
choose between a coarse resolution with 8 different steps of speed or a fine resolution with
512 steps. The program elements in levels 1 and 2 only use the coarse resolution, but
starting with level 3, there are elements which allow you to use the fine resolution. The speed
is displayed next to the slider control as a number. If you would like to test an output, you
connect a motor to an output, e.g. M1.

 Lamp outputs O1—O8
Each motor output can alternatively be used as a pair of individual outputs. These can be
used to control not only lamps, but also motors which only need to move in one direction (e.g.
for a conveyor belt). If you would like to test one of these outputs, you connect one lamp con-
tact to the output, e.g. O1. You connect the other lamp contact with one of the ground
sockets (┴) of the interface.

 Extension modules
Additional interfaces of the same type or expansion modules (extensions) can be connected
to the different interfaces (see the user manual related to the device). These buttons allow
you to select which of the connected devices you would like to access with the test window.

GB
ROBOPro

15

3 Level 1: Your first control program

After testing the hardware, that is the Interface and the switches and motors connected to it, in
Chapter 1, we’ll now get down to programming. But what does “programming” actually mean? Well,
just imagine that, for example, a robot is connected to our Interface. But this robot is so stupid that it
can’t do anything on its own. Luckily, we’re a bit smarter than that. We can tell the robot exactly
what to do. How? Well, what happened in the last chapter when we used the mouse button to set
the motor output M1 on “left”? Right, we switched the motor on. If, for example, this motor were to
drive the gripping claw of our robot, we would have done nothing else than to say to the robot:
“Grip the object!” But now we don’t want to initiate every step by hand; rather the robot should do
this automatically. To achieve this, we must store the individual steps to be carried out, so that the
robot can work through them one after another, i.e., we must create a program, which will control
the robot on our behalf. Logically enough, the technical term for this is a control program.

3.1 Creating a new program

The ROBO Pro software gives us a great tool to design these control programs and to test them
with the aid of a connected Interface. Don’t worry: we’re not about to program the robot straight
away. We shall content ourselves initially with simple control tasks. To do this we must create a
new program. In the toolbar you will find the entry “New”. If you left-click on it with your mouse,
a new, empty program is created.

Now you see a large white drawing surface, in which you will enter your first program. If you see
two stacked windows in the left margin, please switch to Level 1: Beginners in the Level menu.

New

GB
ROBOPro

16

3.2 The elements of a control program

Now we can set about creating our first control program. We shall do this
on the basis of a concrete example:

Functional description:

Imagine a garage door that can be opened automatically. Maybe you’ve even
got one at home! You arrive at the garage in your car and, with the push of a
button on the transmitter, the door, driven by a motor, is opened. The motor
must keep running until the garage door is completely opened.

Words are a rather cumbersome and not very graphic way to describe a control
program. So what we call flow charts are used to represent the sequence of
actions to be performed and the conditions that need to be fulfilled for these
actions. In the case of our control system, the condition for the action “switching
on motor” is that the button be pressed. It is easy to read one of these flow
charts: just follow the arrows step-by-step! These show exactly how the control
system works – the individual steps can only be carried out in the order given
by the arrows, never in any other way. Otherwise it wouldn’t be worth going to
all the trouble, would it?

Using our ROBO Pro software, we can now draw precisely this flow chart and in so
doing create the control program for the connected hardware (Interface, motors,
switches, etc.). The software does the rest, which, as it happens, is just the way it
is with large industrial applications too! So we can concentrate fully on the creation
of the flow chart.

You put the flow chart together from program elements. Another new concept?
Don’t worry! In ROBO Pro the individual elements that are put together to form a
flow chart are called program elements. The action “switch on motor” means just
that: the Interface should actually switch on the motor that is connected to it! You
will find the available program elements in the element window on the left-hand
side.

3.3 Inserting, moving and modifying program elements

Now it’s a matter of creating a flow chart for our garage door control system from
the program elements contained in the element window. All available program elements can be
fetched from the element window and inserted in the program window.

Inserting program elements.

You move the mouse onto the symbol for the desired program element and left-
click on it once. Then you move the mouse into the program window (that’s the
large white area) and click once again. You can also drag the program element
into the Program window while holding down the mouse button. A program
always begins with a Start element. The Start element is the rounded element with the little green
GO man. It would be best to try this out straight away with this program element: Left-click once on
the Start element in the element window, move the mouse up into the program window and once
there left-click once more.

GB
ROBOPro

17

The next element in the program flow chart queries an input and then
branches to one path or another depending on its state. In the element
window, click on the element depicted right and then move the mouse
below the previously inserted Start element. If the upper input of the
Branch element is one or two grid points below the exit of the Start
element, a connecting line will appear in the program window. If you
left-click again, the Branch element is inserted and automatically con-
nected with the Start element.

Moving program elements and groups

A program element can be moved to the desired position after insertion while holding down the left
mouse button. If you want to move several elements as a group, you can start by drawing a frame
around the elements while holding down the left mouse button. To do this you have to left-click in
an empty zone, keep the button pressed and use the mouse to draw a rectangle containing the
desired elements. The elements in the rectangle are now displayed with a red border. If you now
move one of the red elements with the left mouse button, all the red elements are moved. You can
also mark individual elements red by left clicking on them while holding down the shift key (i.e. the
upper/lower case key). If you left click in an empty zone, all the red-marked elements will be dis-
played normally again.

Copying program elements and groups

Copying program elements and groups can be done in two ways. You can proceed exactly as for
moving, except that you press the CTRL key on the keyboard before moving the elements. In this
way the elements are not moved, but copied. However, with this function you can only copy ele-
ments within a program. If you want to copy elements from one program to another, you can use
the Windows clipboard. First select some elements, as described in the previous section in the
case of moving elements. If you now hit CTRL+C on the keyboard or click on Copy on the Edit
menu, all the selected elements will be copied onto the Windows clipboard. Now you can change
over to another program and re-insert the elements there with CTRL+V or Edit / Paste. Once
elements are copied, you can also paste them in several times. If you want to move elements from
one program to another, you can use CTRL+X or Edit / Cut function at the beginning instead of
CTRL+C or Edit / Copy.

Deleting elements and Undo function

It is quite simple to delete elements. You can delete all the elements marked in red (see previous
section) by pressing the “delete” key (Del) on the keyboard. You can also delete individual ele-
ments with the Delete function. To do this, first click on the button in the toolbar like the one
illustrated and then on the element you want to delete. Try it out now. Then you can redraw the
deleted element. But you can also retrieve the deleted element using the Undo function in the Edit
menu. By using this menu item you can undo any changes to the program.

Delete

GB
ROBOPro

18

Editing program element properties

If you right click on a program element in the program
window, there will appear a dialog window, in which
you can change the element’s properties. The Proper-
ties window for a Branch element is illustrated on the
right.

 Buttons I1 to I8 allow you to enter which of the
Interface’s inputs is to be queried. The inputs
C1D-C4D correspond to counter inputs if you
use them as digital inputs. We will deal with the
inputs M1E-M4E later.

 The additional inputs C1D-C4D and M1E-M4E
are covered in Section 8.1.3 - Digital Branch

 The selection Interface / Extension is not
explained until Chapter 7 - Controlling several
Interfaces

 Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed-contact
switches. Selecting the sensor automatically sets the required input type for the universal in-
puts I1-I8 of the ROBOTICS TXT Controller or the ROBO TX Controller.

 Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch element. Normally the 1 exit is below and the 0 exit is on the right. But some-
times it’s more practical to have the 1 exit on the right. Press on Interchange 1/0
connections and the 1 and 0 connections will be changed over as soon as you close the
window with OK.

The next element in our garage door control system is a Motor
element. Insert it into the program as you did with the previous
two elements, this time under the Branch element. It is best to place
the element in such a way that that it is automatically connected to
the element above.

Hint: If you connect a mini-sensor as a “closer”, using connections 1 and 3 of the switch, the
program branches to the “1” branch if the switch is depressed, and otherwise to the “0”
branch.

If you connect a mini-sensor as an “opener”, using connections 1 and 2 of the switch, the
program branches to the “1” branch if the switch is depressed, and otherwise to the “0”
branch.

GB
ROBOPro

19

The Motor element allows you to switch on or off either a motor, or
a lamp or an electromagnet. Again, you open the Properties
window for the Motor element by right-clicking on the element.

 You can choose which of the Interface’s outputs to control
by means of buttons M1 to M4.

 Under Image you can choose an image to represent the
fischertechnik component connected to the output.

 We will deal with the selection Interface / Extension when
we get to Chapter 7 - Controlling several Interfaces

 Under Action you can select how the output is to be affected. You can start a motor with
direction left (counterclockwise) or right (clockwise) or stop it. You can switch a lamp on or off.

 Under Speed/Intensity you can set the speed at which a motor is to operate, or how brightly
a lamp should glow. Possible values are 1 to 8.

For our flow chart we need the command Motor M1 left with speed 8.

3.4 Linking program elements

Now that you know how to insert elements into a control program, we can get on with the job of
completing our control program. Think back to the functional description of the garage door control
system: is there still something missing? Right: we may have turned the motor on by pushing the
button, but once the door is opened, the motor must be automatically switched off again! In prac-
tice, this is done with the so-called “end switch”. This is a sensor fitted to the garage door in such a
way that it is operated the moment the motor has fully opened the door. As in the case of switch-
ing on the motor, this signal can be used to switch it off again. To query the end switch we can use
the Branch element again.

So insert another Branch element into the program, one which will check the
end switch on input I2. Don’t forget to left-click on the element and to set the
input to I2. As soon as the garage door is open and the end switch has been
pressed, the motor should stop again. This will be achieved using a
Motor element. Start with the same element we used to switch on the motor.
If you right-click on the element, you can change the function of the element to
Stop motor. The program is finished off with an End element. Your program
should now look almost like the illustration on the right. If you have placed the
elements under one another with a separation of one or two grid points, most
of the entries and exits will be connected with program flow arrows. But the
No (N) exit of the two Branch elements is not yet connected. As long as the
switch on input I1 has not been pressed, the program should go back and
query the switch again. To draw this line, click with the mouse successively
on the places shown in the diagram below.

GB
ROBOPro

20

Deleting program flow lines

Deleting lines works exactly like deleting program elements. Simply left-click on the line, so that it
gets marked in red. Now click on the delete (Del) key on the keyboard to delete the line. You can
also select several lines, if you hold down the shift key (that’s the key for shifting between upper
and lower case) and then left-click on the lines in succession. Apart from this, you can also mark
several lines by drawing a frame around them. Now you can delete all the red-marked lines at
once by pressing the Del key.

3.5 Testing your first control program

To test our first control program, you should build a little model. To do this, it is enough to connect
a switch to I1 and to I2 on the Interface, as well as a motor to M1.

Before testing the program, you should save the program file on the hard drive of your computer.
Click on the command Save as on the File menu. The following dialog window will then appear.

Hint: It a line should ever not correctly joined to a connection or another line, this will be indi-
cated by a green rectangle at the point of the arrow. In this case you have to create
the connection by shifting the line or by deleting it and drawing it again. Otherwise the
program flow will not work at this point.

Note: Connecting the Interface to the PC and establishing Interface settings has already

been covered in the previous chapter, which you can refer back to for details.

GB
ROBOPro

21

Under “Save in”, choose the direc-
tory in which you want to save the
file. Under “Filename”, enter a
name not yet in use, e.g. GARAGE
DOOR and confirm by left-clicking
on “Save”.

Start

To test the program,
push the start button
(shown left) in the
toolbar. First, ROBO Pro will test whether all the program elements are properly con-

nected. Should an element not be correctly connected or something else not be in order, it is
marked in red, and an error message is displayed describing what is not right. If, for example, you
have forgotten to connect the No (N) exit of a program branch, it will look like this:

If you have received an error message, you must first of all correct the reported error. If you do not,
the program will not be started.

Note: You will find a full explanation of this mode of operation and of “Download Operation” in

Chapter 3.7, on page 24.

GB
ROBOPro

22

The first Branch element will be marked in red. This shows that the program is
waiting at this element for an event, namely the pressing of the button on I1,
which is supposed to open the garage door. As long as the switch on input I1
has not been pressed, the program takes the No (N) alternative of the branch
and goes from there back to the beginning of the branch again. Now press the
switch connected to input I1 of the Interface. This fulfils the condition for
proceeding, and the motor is switched on. In the next step, the program waits
for the end switch on input I2 to be pressed. As soon as you operate the end
switch on I2, the program branches to the second Motor element and switches
the motor off again. Finally the program arrives at the program end. A mes-
sage will appear saying that the program has been terminated.

Did everything work? Congratulations! That means you’ve created and tested
your first control program. If it doesn’t work properly—don’t give up, just check
through everything carefully again; there must be a mistake hidden in there
somewhere. Every programmer makes mistakes, and making mistakes is the
best way to learn. So keep your chin up!

3.6 Other program elements

If you have tried your first control program on a real model garage door, the door will now be open.
How can we close it again? Of course we can start the motor again by pushing a button! But we
want to try another solution, and learn about a new program element in the process. To do this,
you start by saving the program under a new name (we will need the current flow chart again later).
Use the menu item Save as ... in the File menu to do this, entering an as yet unused filename.

3.6.1 Time delay

Before we can extend the flow chart, you have to delete the connection between
“switch off motor” and “Program end” and shift the End element down. Now you
can insert the new program elements between these two elements. The garage
door is to be closed automatically after a period of 10 seconds. To do this you
can use the Time delay program element illustrated right. Within a broad range,
you can set the waiting time as you wish, as usual by right-clicking on the element. Enter the
desired time delay of 10 seconds. To close the garage door, the motor must of course go the other
way, that is, to the right clockwise). The motor is turned off by another end switch on I3.

GB
ROBOPro

23

The finished flow chart should look roughly as pre-
sented on the right. For the sake of presentation, the
new program elements have been moved to the right.
Once there are no more mistakes in the flow chart, you
can test the extended garage door control system as
usual with the Start button. The motor is switched on
by operating the switch on I1, and switched off again
by operating I2. This is how the garage door is opened.
Now the Time delay program element has a red border
for 10 seconds, that is the delay time we set. Then the
motor is switched on to turning the other direction until
the switch on I3 is operated. You should also try
changing the delay time.

Start

3.6.2 Wait for input

Alongside the Time delay
element there are another
two elements that wait for
something before allowing
the program to proceed. The Wait for Input element, depicted left,

waits until one of the Interface’s inputs is in a particular state of has changed in a particular way.
There are 5 variants of this element.

Symbol

Wait for Input=1

(closed)
Input=0

(open)
Change 0-1
(open to
closed)

Change 1-0
(closed to
open)

Any change
(1-0 or 0-1)

Same
function
using
Branch
alone

A combination of Branch elements could be used instead, but the Wait for Input element makes
things simpler and easier to understand.

3.6.3 Pulse counter

Many fischertechnik model robots also use pulse wheels. These gear
wheels operate a switch four times for every revolution. With these
pulse wheels you can turn a motor on for a precisely defined number
of revolutions rather than for a given time. To do this, you need to
count the number of pulses at an input of the Interface. For this pur-

pose there is the Pulse counter element, depicted left, which waits for a user-definable number of
pulses. In the case of this element, too, you can set whether any alterations or only 0-1 or only 1-0

GB
ROBOPro

24

changes are regarded as pulses. With pulse wheels, one normally waits for changes in either
direction, so that a resolution of 8 steps per revolution is obtained with 4 gear teeth.

3.6.4 Counter loop

With the Counter Loop element you
can very easily have a specific part
of the program executed several
times. The program illustrated, for
example, turns a lamp on M1 on
and off again 10 times. The
Counter Loop element has a built-in
counter. If the counter loop is enter-

ed via the =1 entry, the counter is set to 1. If the counter loop is
entered via the +1 entry, 1 is added to the counter. According
to whether the counter is greater than a value you have
prescribed, the counter loop branches to the Yes (Y) or No
(N) exit. So the Yes exit is used when the loop has been
traversed as many times as you specified in the counter value.
If further passes through the loop are needed, on the other
hand, the counter loop branches to the No exit. As in the case
of the Branch element, you can also swap the Yes and No
exits through the property window.

Start

Pause

Step

Download

3.7 Online and download operation—what’s the difference?

So far we have tested our control programs in what is called online operation. In this way you
were able to follow the progress of the program on the screen, because the currently active ele-
ment was marked in red on the screen. You use online operation to understand programs or to
look for errors in programs.

In online operation you can also stop the program and continue it again by pressing the Pause
button. This is very practical if you want to investigate something about your model without stop-
ping the program altogether. Also, if you are trying to understand the way a program runs, the
Pause function can be very helpful.

With the Step button, you can execute the program in individual steps, element by element. Every
time you press the Step button, the program goes to the next program element. If you execute a
Time Delay or Wait for element, it can of course take a while for the program to get to the next
element.

For your interface you can also use download operation instead of online operation. In online
operation programs are executed by your computer. In this mode, it sends control commands such
as “switch on motor” to the Interface. For this, the Interface needs to be connected to the computer
for as long as the program is running. On the other hand, in download operation the program is
executed by the Interface itself. Your computer stores the program in the memory of the interface.
As soon as this has been done, the connection between the computer and the Interface can be
broken. Now the Interface can execute the control program independently of the computer. Down-
load operation is important for example in programming mobile robots, for which a connecting
cable between PC and robot would be very cumbersome. Even so, control programs should initial-
ly be tested in online operation, as possible errors are more easily found here. Once fully tested,

GB
ROBOPro

25

the program can be downloaded onto the interface. The problematic USB cable can be replaced
by a Bluetooth connection TX or TXT Controller or Wi-Fi (TXT Controller). In that way the model
has unrestricted mobility even in online operation (see the manual of the respective interface).

But online operation also has advantages compared with download operation. In comparison with
the Interface, a computer has much more working memory, and can calculate much faster. This is
an advantage with large programs. Also, during online operation a ROBOTICS TXT Controller, a
ROBO TX Controller and a ROBO Interface can be controlled simultaneously from a program.

An overview of the two modes of operation

Mode Advantage Disadvantage

Online Program execution can be followed on
screen

Execution, even of large programs, is very
fast

Simultaneous control of different interfaces
is possible

The earlier Intelligent Interface is support-
ed

Panels can be used

The program can be stopped and contin-
ued

Computer and Interface must remain
connected

Download Computer and Interface can be separated
after download

The earlier Intelligent Interface is not
supported

Program execution cannot be fol-
lowed on screen

Using download mode

You can transfer the garage door control system to the
interface by means of the Download button. First the
dialog window on the left is displayed. The interfaces
have several program storage areas, a RAM
(Random Access Memory) area and a Flash memory
area. A program in RAM is lost as soon as you
disconnect the Interface from the power supply or the
battery pack is discharged. A program stored in Flash
memory, on the other hand, will remain stored in the
Interface, even without power, for years. Of course you
can nevertheless overwrite programs in Flash memory at
any time. Download to RAM, however, is distinctly faster,
and is therefore recommended for testing purposes.

You can store multiple programs, for example multiple behavior modes for a mobile robot, in the
Flash memory. You can select, start and stop the multiple programs by using the display and the

Download

GB
ROBOPro

26

selection keys of the ROBOTICS TXT Controller or the ROBO TX Controller. If the Start program
after download option is active, the program is started immediately after download.

For mobile robots, the option Start program with key on Interface makes more sense. This is
because, if you don’t have a Bluetooth or Wi-Fi interface, you still have to unplug the USB cable
before your program sets the robot in motion. In this case, you start the downloaded program by
using a selection key of respective interface.

The "Autostart" function starts a program automatically as soon as the Interface is supplied with
power. In this way, you can for example you can supply the Interface with power via a mains
adapter with a time switch, and start the program every day at the same time. Then you don’t have
to either leave the Interface permanently switched on or start the program with the selection key
every time you switch it on.

3.8 Tips and Tricks

Altering connection lines

If you shift an element, ROBO Pro will try to adjust the connecting lines in a reasonable way.
Should you not like an adjusted line, you can easily change the connecting lines by left-clicking on
the line and moving it while holding the key down. According to where the mouse is placed on the
line, a corner or an edge of the line is moved. This is displayed by different mouse-cursors:

If the mouse is positioned over a vertical connection line, you can move the whole vertical

 line while holding down the left mouse key.

 If the mouse is positioned over a horizontal connection line, you can move the
whole horizontal line while holding down the left mouse key.

 If the mouse is positioned over an oblique connection line, a new point is inserted into
the connecting line when you left-click. You have to hold the left mouse key down, not
releasing it until the mouse is positioned where the new point is to be placed.

If the mouse is positioned near an end point or a corner of a connecting line, you can

 move this point while holding down the left mouse key. You can only move a connected
 line endpoint to another suitable program element connection. In this case the endpoint of

the connecting line will be linked to this connecting line. Otherwise, the point will not be moved.

A different approach to connecting lines

Connecting lines can also be created by moving program elements. If you move a program ele-
ment so that its entry is one or two grid points below the exit of another, a connecting line between
the elements is created. This also applies to an exit that is moved over an entry. After that, you

Note:

You can also find a comprehensive description of the functions of the ROBOTICS TXT Con-
troller in the accompanying operating manual.

GB
ROBOPro

27

can move the program element to its final position or draw further links for the remaining entries
and exits.

GB
ROBOPro

28

4 Level 2: Working with subprograms

Once you have successfully created and tested your first control program, you are ready for ROBO
Pro Level 2. Now choose the entry Level 2: subprograms in the Level menu. You are sure to notice
the difference straight away: The element window has disappeared, and in its place you now have
two stacked windows on the left-hand edge.

But don’t worry! The element window is still there, only it’s now empty. In Level 2 there are more
program elements, so that you would lose track of them if they were all packed into one window.
For that reason, from Level 2 onwards, all the elements are classified into element groups. The
elements are organized into groups in a similar way to how files on your computer’s hard disk are
organized into folders. If you select a group in the upper window on the left-hand side, all the
elements in this group appear in the lower window. You will find the elements from Level 1 in the
group Program elements / basic elements. Since the element window is now only half as big, you
have to use the scroll bar on the left of the element window to display the lower elements.

So, now let’s get down to the real topic: subprograms! Of course the flow charts we have designed
so far have not been on such a large scale that we could not take them all in at once, but surely
you can imagine that this could very easily happen in the case of larger projects with more com-
plex flow charts. Suddenly your worksheet is full of components, there are connecting lines
everywhere and you have to constantly scroll back and forth on the screen. “Now where was this
or that exit?” In short—minor chaos threatens! What to do? Is there no way to bring some order
into this chaos? Yes there is—it’s called subprograms!

GB
ROBOPro

29

4.1 Your first subprogram

A subprogram is very similar to the programs you’re already familiar with. To investigate them
more closely, first you have to create a new program and a new, empty, subprogram within this
program. To do this, press Program New and then the SP New button in the toolbar. A window will
appear, into which you can enter the name of the subprogram and a description of it.

The name should not be too long (8-10 letters max), as
otherwise the subprogram symbol will be very large. Of
course, you can later modify any entries you make here.

As soon as you close the “New” subprogram window with
OK, the new subprogram will appear in the subprogram
bar.

You can switch between the main program and the sub-
program at any time by clicking on the program name in the subprogram bar. As both programs
are still empty, however, you won’t see any difference yet.

We now want to divide the garage door control system (see Section 3.6 - Other program elements)
into subprograms. The program consists of four functional units:

 Wait until button I1 is pressed

 Open door

 Wait ten seconds

 Close door

Now we need to separate the opening and closing into two subprograms. Either subprogram can
then be called from the main program with a single reference. The wait for sensor I1 and the 10-
second time delay remain in the main program, as each of them consists of only a single element
anyway. You have just established a new program with a subprogram named Subprogram 1.
However, Open and Shut would be better names for these two subprograms. You can rename the
already created subprogram by first selecting Subprogram 1 via the subprogram bar, if it is not
already selected.

New

SP New

GB
ROBOPro

30

Then switch via the function bar to the Properties
window for the subprogram by clicking on Proper-
ties. Here you can change the name of SP 1 to
Open. Most of the other fields can only be altered
in the Advanced or even Expert levels. The item
Symbol creation will be explained later on.

If you click on Description on the function bar, you
can change the previously entered description,
although “My first subprogram” remains an accu-
rate description.

In the function bar, click on Function now, so that
you will be able to program the function of the
subprogram. Now you will see the program
window again, in which you inserted program
elements in the previous chapter for your first ROBO Pro program. Make sure that you have se-
lected the subprogram Open in the subprogram bar.

Are you ready to write your first subprogram? Well let’s go! But just how does a subprogram start?
Good question! You have always begun a main program with the start element. A subprogram
begins with a similar element the Subprogram Entry. The element has this name because it is
through this element that program control passes from the main program into the subprogram. You
can’t use a Start element here, because of course no new process is being started.

You will find the Subprogram entry in the element group window
under Subprogram I/O. Now place the Subprogram entry near the
top of the program window for the Open subprogram. You may
also give a Subprogram Entry element a different name than
Entry, but this will only be necessary if at some later time you
write a subprogram with multiple entries.

The subprogram now runs identically to the part of the main program which does the opening. You
switch on the motor M1 in the left-rotating (anticlockwise) direction, wait until the sensor on input I2
is closed and then switch the motor off again.

To close off the program you use a Subprogram Exit. The difference between the Subprogram Exit
and the Stop element is the same as between the Subprogram Entry and the process Start.

Start element Starts a new, independent process.

Subprogram entry Here program control is handed over from the main
program to the subprogram

GB
ROBOPro

31

The completed subprogram should now look something like this:

Make sure you have actually entered the subpro-
gram under Open, and not under Main program. Now
switch in the subprogram bar from Open back to
Main program. Now you will see the main pro-
gram window, which, as before, will be empty. As
usual, insert a Start element (not a Subprogram
entry!) into the main program. Querying the switch on
I1, which is supposed to open the garage door, you
will also do as before in the main program.

Now you can insert your new subprogram, like
an ordinary program element, into your main
program (or into another subprogram). You will find
it in the element group window under Loaded
programs and the filename of your program. If you
have not yet saved your file, it has the name
unnamed1. If you have loaded other program files,
you can also select subprograms belonging to other files in the selection window. This way, it is very
easy to use subprograms from another file.

Stop element Stops program execution of an independent process

Subprogram Exit Here program control is handed back from the
subprogram to the main program

GB
ROBOPro

32

SP New

In the element group Loaded programs / unnamed1 you will find two green subprogram symbols.
The first, with the name Main program, is the symbol for the main program. This is used rather
infrequently as a subprogram, that even that is possible, for example if you are controlling a whole
machine park, and you have previously developed the control systems for the individual machines
as main programs. The second symbol, with the name Open, is the symbol for your new subpro-
gram. Open is the name you entered under Properties. Now insert the subprogram symbol, in the
same way as you’re used to doing it with ordinary program elements, into your main program. It’s
as easy as that!

You can close your main program right now with a stop element and try it out, if you like. The door
will be able to be opened by pressing the button on I1, but we haven’t programmed the closing part
yet. To do that, you write another subprogram. Press the SP New button on the toolbar and enter
the name Shut in the "New" subprogram window. You are not obliged to enter a description, but it
wouldn’t hurt, so you won’t forget later what the subprogram is meant to do.

Now enter the program for shutting the garage door in the program window for the subprogram
Shut. Once again, you start with the Subprogram entry. First the motor M1 should turn to the right
(clockwise). As soon as the end switch on I3 is closed, the motor M1 should stop. Once again the
subprogram is closed off with a Subprogram exit.

Now use the subprogram bar to switch back to the main program. If you previously closed off the
main program with a Stop element so as to try it out, you must delete the Stop element again. After
being opened, the garage door should remain open for 10 seconds before being closed again.
After a 10-second Time Delay, you insert the Shut subprogram symbol from the element group
Loaded programs / unnamed1. The main program and the two subprograms should look some-
thing like this:

Main program Open Shut

GB
ROBOPro

33

The program starts at the Start element in the main program. Then it waits until sensor I1 is
depressed. Incidentally, you could also do this using the Wait for Input element (see Section 8.1.9
Wait for input). After the switch I1 has been pressed, the main program calls the sub- program
Open. This switches program control to the Subprogram Entry for the subprogram Open. The
subprogram Open opens the garage door and then reaches its Subprogram exit. At this point
program control returns to the main program. After the subprogram finishes the main program
waits for 10 seconds. Then program execution switches to the subprogram Shut, which shuts the
garage door again. After control returns from the subprogram "Shut", the main program comes to a
"Stop" element, which terminates the program.

4.2 The subprogram library

It is very easy to copy subprograms from one file to another: you load both
files and insert a subprogram from one file into another using the element
group Loaded programs. For frequently used subprograms, however, the
process is even simpler, through use of the Library. ROBO Pro contains a
library of ready-made subprograms that you can easily re-use. As well as
that, you can create your own library, in which you can store your frequently
used subprograms.

4.2.1 Using the Library

The Library is initially divided into several groups. You will find subprograms you can use for
models from specific construction kits. In the Advanced group you will find subprograms you can
use for all possible models. But most of these subprograms in the "Advanced" group require
techniques from Level 3, which are not explained until the next chapter.

If you point to one of the subprogram symbols
with the mouse, a short description is displayed.
If you insert a subprogram into your program,
you can display a detailed description by select-
ing the subprogram in the subprogram bar and
then clicking on Description in the function bar.

4.2.2 Using your own library

After you’ve been working away with ROBO Pro for a while, you are sure to have some subpro-
grams that you use more frequently than others. To avoid having to look for and load the relevant
file every time, you can also set up your own subprogram library, which functions in exactly the
same way as the pre-defined library. Your own library consists of one or more ROBO Pro files all
stored in one folder. Each file in this folder will be represented by its own group in the group selec-
tion display.

You can specify which folder you’d like to store your own library in the File menu under Own
library directory. The default directory for your own library is C:\Programs\ROBOPro\Own Library.

Caution: If you insert a program from the Library, in some cases further subprograms that are
used by this subprogram will also be inserted. You can remove all these subprograms again

by selecting the Undo function on the Edit menu.

GB
ROBOPro

34

If you have your own user directory on your computer, it is a good idea to create your own folder
there and use this to store your library.

Organizing your own library

ROBO Pro has no special functions to alter a library. But the procedure is quite simple. If you
would like to add subprograms to a library group or remove them from one, you must first load the
corresponding file. You will find this file in the directory which you have established as your "Own"
library directory. Now you can, for example, load a second file and drag a subprogram from this
from the "Loaded" programs group into the main program of the library. In a library, the main pro-
gram is not a real program, but rather just a collection of all the subprograms in the library. In the
case of libraries, the main program itself is not displayed in the element window. Of course you can
also delete subprograms from a library or modify subprograms there.

If you have modified a library file and saved it, then you must select the menu item Update own
library in the File menu. This will update the file list in the group window.

4.3 Editing subprogram symbols

As you saw in the previous section, ROBO Pro automati-
cally generates a subprogram symbol for your
subprograms. But you can also draw your own symbols,
which give a better idea of what your subprograms do. To
do this, you must switch from automatic to manual sym-
bols in the subprogram’s Properties window. Next you can
switch from Properties to Symbol in the function bar and
edit the subprogram symbol there. You will find drawing
functions in the element group window under Draw.

Under Draw / Shapes you will find all
the usual basic graphic elements such
as rectangle, circle, ellipse, polygons, etc. Under Draw / Text you will find text
objects in various font sizes. In the other groups under Draw you will find func-
tions to alter the color and similar properties of selected elements. Precise
details of how to use the drawing functions are given in Chapter 10 - Drawing
functions on page 125. Also observe the functions in the main menu under
Draw.

You can also move the connections of the subprogram, but you can’t delete the connections or
add new ones. In the subprogram symbol there is always one connection for each subprogram
entry or exit. The connection elements are generated automatically, even if you have switched to
manual symbol generation.

Tip: Initially you can specify, under Own library directory, the folder in which you also store
your ROBO Pro programs. That way you will have rapid access to all subprograms in all files
in your working directory.

GB
ROBOPro

35

As soon as you leave the symbol-editing window, all calls to the subpro-
gram in the main program or in other subprograms will be modified
accordingly. Please take note that, if you have moved the connections of a
subprogram, this can cause a little confusion with subprogram calls, if the
connections were already connected. The endpoints of the connecting lines
may in some circumstances no longer occur at the right connection, which
will be shown by a cross at the endpoint of the line and at the connection (see diagram). As a rule,
it is generally sufficient to left-click anywhere on the connecting line. The line will then be automati-
cally re-aligned. But it can happen in the case of subprograms with a lot of links that you will have
to edit the line further.

4.4 Tango

So far, you only became acquainted with rather simple programs and maybe you are
eagerly waiting for new program elements and possibilities. But before we deal with variables
and still more difficult things in the next chapter, let us first see everything what can be done with
the pro- gram elements in the level 2. How would it be, for example, if would provide
tangoing to your mobile robot? For the Nerds among you: Tango is danced to music in the 2/4
measure. The basic step includes 8 steps in 3 measures. For the gentlemen, the step sequence is
as follows:

 One slow step forward with the left foot (1/4 measure)

 One slow step forward with the right foot (1/4 measure)

 Now comes the continuous 4/8 measure “swing step“. Thereby you move the feet a little to
not at all, but only displace your weight. At first, you displace your weight by 1/8 measure on
the left back foot, then by 1/8 on the right fore foot and then again by 1/8 on the left back foot.
For finishing the swing step, you take a break of 1/8 measure.

 Three quick steps follow: First, make a small step backwards with the right foot, so that it lies
again near the left foot. Then you make a step aside with the left foot and, in the end, you
place again the right foot near the left foot. These three steps also last 1/8 measure each
and they will be finished again with a 1/8 measure break.

For the lady, the step sequence is symmetrical, that means left and right, as well as forward and
backward are inverted. The whole repeats till the music comes to the end, you hit on the borders of
the room or it becomes boring to you. In both the last cases, you should ask a dancing master for
advice.

But now again to robotics. Maybe you have a fischertechnik mobile robot building set. The robots
in this set mostly have two driving wheels, with an independent motor each. Guiding is
made by these robots in the same way as for track vehicles. If you turn both driving motors in the
same direction, the robot moves straightforward. If a motor is at rest, the robot runs a curve.

Naturally, with these robots you can also move backward, straightforward and about the curve. If
both the driving engines turn in opposite direction, the robot turns in place. Let us now try to trans-

GB
ROBOPro

36

late the tango step sequence in wheel turns. One 1/4 measure should thereby last one wheel turn.
We get then:

 Left wheel 1 turn forward (usually motor M2 left).

 Right wheel 1 turn forward (usually motor M1 left).

Now comes the “swing step“. But naturally, our robot cannot move the body without moving the
"feet". Also, the side step in the 3-rd measure is quite difficult for a robot. Therefore we make a
light turn left in the 2-nd measure and move then in the 3-rd measure a small portion straightfor-
ward, for simulating the side step. For the 2-nd measure, it results:

 Left wheel ½ turn backwards (usually motor M2 right).

 Right ½ turn forwards.

 Left wheel ½ turn backwards.

Both on “left backward” and on “right forward” the robot turns left. In the 3rd measure, we make
now the following:

 Right wheel ½ turn backwards.

 Straightforward ½ turn forwards.

 Right wheel backward and left wheel forward for ½ turn.

Consequently, first we turn again the robot quite a little to the right, then we move straightforward
(in forward left direction), for simulating the side step to the left, then we turn again the robot
straight.

Now let's try to perform this sequence of steps in ROBO Pro. The form of execution will differ,
depending on whether you are using a TXT or a TX Controller with encoder motors or a model with
pulse switches. The two cases are described separately below:

GB
ROBOPro

37

4.4.1 Motor control with pulse switches

At the best, you begin with a subprogram for the single steps. A
subprogram for the first step "Left wheel 1 turn” is shown on the right.
Usually, the driving motor for the left wheel is connected to the
M2 interface output and the appropriate pulse switch to the interface
input I2, whereupon counter-clockwise is forward.

For the first step, you switch the motor M2 counter-clockwise
(full speed) and you wait then 8 pulses at the I2 input. 8 semi
pulses means that you count both the 0 → 1 and 1 → 0 transitions.
You can choose the element in the property window of the pulse
counter. In many models, 8 semi pulses correspond to one wheel turn.
But this can also differ depending on transmission and arrangement of
the pulse switches, for example 16 semi pulses per turn.

As soon as the 8 pulses are entered, you disconnect again the
M2 motor and the subprogram is finished. You may call this sub-
program, for example “Links 1/4".

For the further steps, you still need the following subprograms:

 Right 1/4 (As Left 1/4 with M1 and I1 instead of M2 and I2)

 Left 1/8R (As Left 1/4, but 4 instead of 8 semi pulses and backward, consequently the motor
clockwise)

 Right 1/8 (As Right 1/4, but 4 instead of 8 semi pulses).

 Right 1/8R (As Rights 1/8, but backword, while motor clockwise)

Naturally, you cannot wait 1/8 pauses over pulse counter, because no wheel
moves in the pauses. Instead of that, we use a delay time. With the standard
models in the ROBO Mobile Set, 4 semi pulses correspond to about 0.3 seconds.
But depending on translation and motor, it may be also otherwise with your
model. Also provide a subprogram for the 1/8 pause. The subprogram contains,
apart from the subprogram input and output, only one single program element,
but you need the pause twice. If you apply a subprogram for it, you can easier
change the pause time.

Now maybe you will argue that we should also use a delay time for the steps and
no counter. Then there would not be the problem to adapt the pause time and
the step time. But the disadvantage would be that the right motor and the left motor never turn
quite equally fast and therefore the robot would not dance reproducible forms. When you use the
pulse switch, on the contrary, you make sure that both the wheels move ever exactly the same
way, even if the accumulator is discharged or a wheel moves a little more difficult than the other.

Now we still miss the subprograms for the 1/8 straight step and the 1/8 turn on the spot. In fact, it
should work exactly as the other steps, only that you switch on two motors instead of one. The only
question is how is it done with the pulse switches. Simply set two pulse counters, one after the
other, will not do. Then the program would first wait 4 half-steps of one motor and then 4 half-steps
of the other motor. Waiting on only one of the two motors, we would approach the matter, but then
there would be problems if both the motors would not turn equally fast. The best solution is to start
both the engines and then wait till one of the pulse switches changes. Then you stop immediately
the motor’s pulse switch changes and wait then till the second pulse switch changes, then you

GB
ROBOPro

38

can stop the second motor. In all, it is unfortunately somewhat complicated, because you do not
know whether the pulse switches are open or closed at the beginning. Because two pulse switches
exist, there are in all four possibilities. But fortunately, there is already a completed subprogram
from the library for this function. Create a “Straight 1/8” subprogram and insert the “SyncStep“ sub-
program from the homonymous library in the “ROBO Mobile Set” folder. If you do not know any
more how it goes on, please check up in Section 4.2 - The subprogram library

Now for the inquiring people among you, the “SyncStep” subprogram represented below will be
explained shortly. The people for whom a look at the subprogram is sufficient may willingly
overleap the following paragraph and the duty. It is entirely all right to use a subprogram without
understanding how it works -- as long as you understand what it does.

The subprogram first asks about the states of both the pulse switches, I1 and I1. Depending on
whether I1 and I2 are 0 or 1, the subprogram selects one of 4 different program branches. The
branch quite on the left is for the case in which I1 and I2 have the 1 value at the beginning. The
sub pro- gram must then wait, in a logical way, that I1 or I1 should receive the 0 value. This will
be done in the loop with the two branching elements. As long as I1 and I2 have the 1 value, the
program turns in a circle. But as soon as one of the two inputs becomes 0, the respective motor
will be immedi- ately switched off. Then the subprogram waits with a “Wait on input” element until
the second input becomes 0 and then switches the second motor off. The loop in which it is being
waited on both inputs is necessary, because you do not know which of the two motors turns faster
and which of the pulse switches changes therefore faster. The other 3 branches operate exactly
so, but they start from another initial state and are therefore waiting the final state respectively
opposite to the initial state. For example, in the second branch from left, at the beginning, I1=1 and
I2=0, as you can test easily, by pursuing the way via the first two branching elements.
Consequently, the second branch waits that the values should become I1=0 and I2=1. If you
would like to write the program yourself, you must watch out very exactly which are the initial

GB
ROBOPro

39

values of the pulse switches in each branch, and which you must wait accordingly.

If you have already browsed something over variables in the following chapter, try once to write a
subprogram with same function with variables. That is easier, because you can save at the begin-
ning the value of the two pulse switches with the = command elements in two variables and you
only need one program branch, in which you can compare the current value of the inputs with the
values of variables.

So, now back to the tango: The purpose of the
“SyncStep” subprogram consisted in writing therein a
“1/8 Straight line“ subprogram, which goes 4 half-steps
straightforward. If you start the motors M1 and M2 and
you execute then the “SyncStep” sub program, the
motors are again stopped after a half-step.
Consequently, you must make all of it 4 times, and it runs
at the best with a loop element.

If you watched carefully, you now probably worry that the
motors, at the end of the “SyncStep” subprogram are
switched off, and then switched again on immediately.
With the slower of two engines there is a very short
break between switching off and on, which is necessary
to adapt the speeds of the two motors to each other.
That is however harmless for the motors. In fact, the
interface regulates the motor speed also by constant switching off and on. That is called the PWM
(pulse width modulation). On the contrary, with the faster motor, switching off and on occurs so fast
that the motor takes absolutely no notice of it. However, in the “SyncStep” subprogram you could
also give up switching off the second motor and switch off both the motors as soon as the loop is
completed. With programming too, different ways often lead to the goal.

Try out whether a robot with the “SyncStep” subprogram really runs better straightforward, than if
you simply switch on a certain number of pulses on both the motors.

The last subprogram, which we still need, should turn the robot 4 half-steps long to the right on the
spot. It is interesting that you can use for that exactly the same “SynchStep” subprogram as for the
“1/8 Straight line” subprogram. The “SyncStep” subprogram namely stops the motors only, and the
stop command does not depend on the direction of rotation. You start the motor M1 in the loop
simply with a direction of rotation right instead of left. The pulse switches are also independent of
the direction of rotation. It is all the same whether the motors turn to the left or to the right, the
pulse switches always change from 0 → 1 and from 1 → 0. Consequently, in order to create the
“Turn 1/8” subprogram, you only need to copy the “1/8 Straight line” subprogram and to change
the direction of rotation.

GB
ROBOPro

40

4.4.2 Motor control with encoder motors

You should preferably begin with subprograms for the individual steps.
A sub-program for the first step "Left wheel 1 turn" is shown on the
right. Normally the drive motor for the left wheel is connected to the M2
interface output and the corresponding pulse switch to I1 interface
input, with counter-clockwise being forward

For the first step, switch motor M2 clockwise (full speed) and then wait
75 full pulses at input C2. 75 full pulses means that you wait 75 times
for the change 0 → 1 followed by the change 1 → 0. Encoder motors
have advanced motor control that starts the motor and stops it again
after a set number of pulses. To this end, select the Action Distance in
the properties window and enter 75 pulses as Distance.

But the element does not have to wait for the motor to reach its target.
The program could do other things while the motor is running. Howev-
er, in this case we just want to wait for the motor to reach its target. To
this end, every motor output has its own "target reached" input. For
motor M2, this is input M2E.

By the way, an encoder motor needs two connections at the TXT or
TX Controller, a motor output M1 to M4 and a counter input C1 to C4. An encoder motor always
uses the counter input with the same number as the motor output. This is why the counter num-
bers cannot be adjusted in the properties window of the advanced motor control.

Once the motor has reached its target, delete the Action Distance because the motor control stops
the motor on reaching its target. The motor then no longer reacts to normal motor commands such
as Left or Right. To do this, use the advanced motor control again, but this time with the Action
Stop. However, this is only necessary if you want to control the motor with the normal motor
element. The motor reacts to actions in the advanced motor control also without Action Stop.

For the further steps, you need the following subprograms:

 Right 1/4 (as left 1/4 with M1 and M1E instead of M2 and M2E)

 Left 1/8R (as left 1/4 but 37 instead of 75 pulses and backwards, i.e. motor clockwise)

 Right 1/8 (as right 1/4 but 37 instead of 75 semi pulses)

 Right 1/8 R (as right 1/8, but backwards, i.e. motor clockwise)

Of course you cannot wait for 1/8 pauses using the pulse counter because no
wheel moves in the pauses. Instead, we use a delay time. With the standard
models in the ROBO TX Training Lab, 37 pulses correspond to about 0.3 sec-
onds. But this can differ in your model, depending on transmission and motor. So
you need to write a subprogram for the 1/8 pause. Apart from the subprogram
input and output, the subprogram contains only one single program element, but
you need the pause twice. If you create a subprogram for this, it is easier for you
to change the pause time.

Now you could argue that we should also use a delay time for the steps instead of the advanced
motor control. This would avoid the problem of having to adapt the pause time and the step time.
But the drawback would be that the right and left motor never turn at exactly the same speed so

GB
ROBOPro

41

that the robot would therefore not dance in reproducible forms. On the other hand, using the ad-
vanced motor control ensures that the two wheels always cover exactly the same distance, even if
the battery is flat or one wheel is stiffer than the other.

Now we just need the subprograms for the straight 1/8 step and the
1/8 turn on the spot. The advanced motor control also offers the possi-
bility of controlling two motors at the same time, with the
Synchronous and Synchronous Distance actions. The Synchro- nous
action ensures that two encoder motors turn at exactly the same
speed. As a result, your robot moves almost straight ahead. However,
exactly straight ahead is not possible with encoder motors,
because the wheels always have a certain slip. In our case, M1 and
M2 should turn at the same speed over a distance of 75 pulses. To do
this, use the Synchronous Distance action. For motors with
synchronous coupling, the target reached signal is not set for both
motors until both motors have reached their target. It is therefore
sufficient to wait for one of the two target reached signals. Don't forget
to stop both motors again at the end!

Try out whether a robot really does move straight ahead with more
accuracy using the Synchronous Distance action compared to con-
trolling both motors separately with the Distance action.

The last subprogram that we need is supposed to turn the robot to the
right on the stop for 37 pulses. Here again, use the advanced motor control with the Synchronous
Distance action, with both motors turning in different programs for the subprogram "Turn
1/8": Think about which way M1 and M2 have to turn for the model to turn to the right on the spot.

4.4.3 Tango main program

Now, after you have all subprograms together, you can begin the main program. Now, it is not at
all difficult how the main program could look, you see below and on the next page

The main program runs the Tango steps endlessly in a loop. Try to use a counting loop for
executing the whole tango sequence 5 times in a loop. To that purpose, copy the content of the
main program with Processing/Copying and Processing/Inserting into a new subprogram and add
an Input and Output subprogram. Then you can run this subprogram 5 times in the loop.

GB
ROBOPro

42

You find the finished tango program in the ROBOPro installation list under:

Sample programs\Manual\Tango Encoder Motor\TangoSolo.rpp Sample

programs\Manual\Tango Pulse Switch\TangoSolo.rpp

However, if you have a suitable robot, test once your self-written program or the finished program.

Now maybe you think: it is fairly nice, but actually two belong to dancing. Writing a program which
executes the lady step suitable for the gentleman step is however not difficult. You must thereto
only interchange leftwards and rightwards and forwards and backwards. First load your program
for the gentleman step and save it under a new name, for example TangoSoloLady.rpp. Now
change the subprograms, for example Left 1/4 to Right 1/4 B. For that purpose, you must change
M2 to M1 and the direction of rotation from left to right. You can change the name of the sub-
program by clicking on the properties tab and there enter a new name. The name also changes
automatically in the main program where the subprogram is called.

The Turn 1/8 subprogram does not change. Can you imagine why? Interchange leftwards and
rightwards (M1 and M2 in the sub program) and forwards and backwards (motor
left- wards/rightwards) in Turn 1/8, and compare the original subprogram with the changed
subprogram.

If you have two mobile robots, now load into one the TangoSolo.rpp program and into the other
the TangoSoloLady.rpp program. If you have only one robot, perhaps you can try it out together
with someone which has also a robot. While downloading, you should state that the program is
started over the feeler at the interface. Now place both robots against each other as in the drawing
below, easily displaced, and start both robots at the same time by briefly pressing the “Start”
pushbutton (TXT or TX Controller) or the “PROG” pushbutton (ROBO interface) on the interface.

GB
ROBOPro

43

If you have started both robots somewhat at the same time, both will dance tango awhile prettily in
time with one another. However, because the motors and accumulators are not exactly alike, the
motors do not turn just equally fast and sooner or later the robots come distinctly off tact. How is it
done so that that both robots should remain intact over longer time, you will learn in the next
chapter.

4.5 Tango 2: Communication through Wi-Fi, Bluetooth or RF data
link

To remain in rhythm, the two tango robots have to coordinate their movements. The TXT Controller
has an integrated Bluetooth/Wi-Fi radio module and the TX-Controller has an integrated Bluetooth
radio module. The ROBO RF data link is available for the ROBO interface. The ROBO RF Data
Link consists of two radio modules. The interface radio module is built in as card directly into the
ROBO interface, the PC radio module in the red housing is connected to the PC over the USB. Up
to now, you have probably only used the radio link to manage your mobile robots by radio and
therefore without cable connection, online. But Wi-Fi, Bluetooth and RF data link can do much
more: two robots can exchange messages and so communicate with one another.

In the level 2, under Program items,
there is a Send, Receive sub-group,
with two elements. The left element in
the picture is the transmitter, the right
element, the receiver.

The represented transmission element
sends the Hello message to the
TXT
Controller, the TX-Controller or the ROBO Interface (just "TX-Controller" below) with the radio call
number 1, abbreviated to FRN 1. The radio call number is a kind of telephone number, by means
of which it is stated to which controller the message is sent. More thereto you learn in the following
Chapter 4.5.1 Radio settings for the Robo interface on page 47 and Section 4.5.2 Bluetooth
settings for the TX controller on page 49.

The receiver at right in the picture operates like a program branching: If the Hello message was
received, the element is branched to the Yes output Y, otherwise to the o output N.

Let us suppose that the transmitter element is called on by a program on the controller with the
radio call number (telephone number) 2. It sends then over radio the Hello message to the inter-
face with the radio call number 1, because it is indicated in the transmitter as destination.
The interface with the radio call number 1 notes that a Hello message was received. If the next
time a receiver element asks this interface whether a Hello message arrived, the answer is Yes,
then again No, till another Hello message is received. If on this interface a receiver element next
time asks whether a Hello message arrived, the answer is Yes, thereafter again No, until a further
Hello message has arrived. The receiver cannot differentiate from which interface the message
was sent†. In order to be able to differentiate it, you must send different messages.

The message is an arbitrary word as in the example Hello. However, for technical reasons, only
the first three letters or numbers of the message are considered. You can indicate more than three
characters, but “Hello“, “Help“ and “helicopter“ all stand for the same message, because all begin

Hello

=
Helio

† Starting from the level 4, there are groups of receivers for this purpose.

GB
ROBOPro

44

with ‘Hel'. Large and lower case and special characters (space character!? , % and the like) are
likewise not differentiated. XY! And XY? stand also for the same message. Numbers are however
differentiated, so that XY1 and XY2 are different messages.

Now the synchronisation of the two Tango
robots with the transmitter and receiver element is
not at all difficult. At the beginning of the step
cycle, one robot sends one “Shall we dance“
message and the other robot one “Let us dance“
message and it gets loose. Since the messages
should not be so long, we call them SG for
“Gentleman synchronisation“ and SL for “Lady
synchronisation“. On the right, two subprograms
for the synchronisation are represented. The left
subprogram is executed by the “Gentlemen” robot
with the radio call number 1 and first sends a SG
message to the “Lady“ with the radio call number 2.
Subsequently, the “Gentleman” waits for a SL
message from the “Lady“.

On the right, the characteristic window of the transmitter ele-
ment is represented. Under the Send command, you can
select an command (a message) from the list or enter your
own command. Under the destination interface, you can select
whether the command should be sent to an interface with a
certain radio call number or to all interfaces.

On the left, you see the characteristic window of the receiver
element. As with the transmitter, you can select an command
(a message). Then you must further select whether the receiv-
er only reacts to commands which were sent directly to the
interface, consequently with a certain radio call number, or to

commands which were sent to all interfaces. You can also select both. At last, you can still inter-
change the Yes and No connections, as with any branching element.

So far we have spoken of “Messages“. In the characteristic windows of the transmitter and receiver
and later on in the level 3, however the term “command“ will be used. From the view point of the
Data transmission, that is the same. Whether a message is an command, depends on the interpre-
tation, and not on the kind of the transmission. In the level 3, you will have very much to do with

GB
ROBOPro

45

messages, which are, for example, commands for controlling a motor or a variable. Therefore, in
ROBOPro, the term “command” is generally used for messages.

Insert now into any of the the programs TangoSolo.rpp and
TangoSoloLady.rpp one of the synchronisation subprograms
illustrated on the previous side. Call the subprograms Sync.
You can naturally also write the subprograms in such a way
that the “Lady” invites the “Gentleman” to dancing. You call the
subprogram as in the picture on the right in the main program
any time at the beginning of the step cycle. You find the
finished programs in the installation list of ROBOPro under

Sample programs\Manual\Tango Encoder Motor\
Sample programs\Manual\Tango Pulse Switch\

TangoSyncGentl.rpp
TangoSyncLady.rpp

Load the two programs, each into a robot, and start the pro-
grams. With the ROBO interface and the data link, you'll see
that the robots only dance if the program on the "Lady" is started first. That is because the “Gen-
tleman” at first sends a SG message, and the “Lady” waits for this message. If the “Gentleman”
is started first, the message goes empty and the “Lady” waits and waits and waits.... If, on the
contrary, the “Lady” is started first, she already waits for the SG message when the “Gentleman” is
started. That is naturally somewhat impractical, in particular when you forgot which robot is the
“Gentleman” and which the “Lady”.

This problem does not arise with the TX-Controller because the gentleman does not send the
message until the Bluetooth radio link to the lady has been set up.

Can't we do something similar for the ROBO Interface?

Quite simple: The “Gentleman” must
repeat his invitation for dancing until the
“Lady” answers. Any time when the “Gen-
tleman” has sent the message, he waits
awhile whether an answer comes from the
“Lady”. In the example on the right, the
“Gentleman” sends the SG message and
then waits in a loop 10 times 0.01 seconds,
thus altogether to 1/10 second whether the
“Lady“ answers. If the “Lady” does answer
within this time, the “Gentleman” sends
again an SG.

Now you probably ask yourself why the gentleman cannot simply send a SG message in a loop
and immediately check whether he received an SL message. That is because the transmission of
the message from the “Gentleman” to the “Lady” lasts 1/100 to 2/100 seconds. The way back lasts
the same time. Even if the program on the “Lady” already runs, it consequently takes up to 4/100
seconds till the answer is there. Within this time, the gentleman could send an amount of SG
messages, which would be all transmitted to the “Lady“. For the first synchronisation that plays no
role, but the surplus SG messages should remain saved in the receiver element in the lady pro-
gram. At the beginning of the next step cycle, the “Lady” would then already have received an SG

ROBO-IF

TX-
Controller

ROBO-IF

ROBO-IF

GB
ROBOPro

46

ROBO-IF

Interface
test

message without the “Gentleman” would have sent a new message. Then the “Ladies” would then
no more wait for the “Gentlemen“. Therefore the “Gentleman” should wait for a sufficiently long
time, before a message repeats.

The “Gentleman” could naturally, also after transmitting, wait 1/10 seconds and then first check
whether he has received an answer. Waiting in a loop 10 times 1/100 second has however the
advantage that the “Gentleman” can continue the program nearly immediately, if he has received
the answer from the “Lady“. Now try out whether the program works better, if you change the Sync
subprogram in TangoSyncGentl.rpp, as described above. The robots should now always start as
soon as the program on the second robot is started, independently of which robot is first started.

If you let your robots dance, until one of the accumulators becomes empty, the synchronisation is
no more sufficient per step cycle. The robots synchronize in fact at the beginning of each step
cycle, but during the cycle they run noticeably apart, if one of the accumulators comes to its limits.
It is better to insert an additional synchronisation after each step. Here it is however clear that both
programs run, so that you can give up a repetition. So that the initial synchronisation and the step
synchronisation should not come in disorder, you should use for that two different subprograms
Sync1 and Sync2, which use different messages, for example SH1, SL1 and SH2, SL2. You find
the finished programs in the installation list of ROBOPro under

Sample programs\Manual\Tango Encoder Motor\
Sample programs\Manual\Tango Pulse Switch\

TangoGentl.rpp
TangoLady.rpp

You find there a TangoNachrichtenMonitor.rpp. If you have a third TX-Controller or a third interface
with ROBO RF data link module, you can start this program in on-line mode, while both Tango
robots dance. The program shows on the screen which messages were sent. The program uses
level 3 elements and you need not understand for the moment how the program works.

4.5.1 Radio settings for the Robo interface

Each ROBO interface gets an own radio call number between 1 and 8 and a frequency assigned to
it, which you can adjust both in the Info window of the Interface Test. In the following illustration,
you find the ROBO RF Data Link adjustments, on the right above. All RF Data Link modules, which
should exchange messages with one another, must be adjusted to the same frequency. The
frequency is entered as a number between 2 and 80. You can change the frequency, if several
groups of robots in an area, for example in a school or with a competition, should communicate
independently from one another. All robots, which belong to a group, use the same frequency.
Different groups use different frequencies. You can also change the frequency, if the RF Data Link
does not function well on the frequency used by you. Many radio systems, for example wireless
PC networks, use the same frequency range (2,4 GHz) as the ROBO RF Data Link. If the RF
DATA Link is disturbed by other radio systems, a frequency change can remedy the problems.
Note however that you must then change all the RF Data Link Modules and the PC Radio Module,
since all devices in a group must always use the same frequency.

GB
ROBOPro

47

All the ROBO interfaces with RF Data Link, which are adjusted to the same frequency, must have
a different radio call number between 1 and 8. The radio call number 0 is reserved for the PC
Module of the RF Data Link, the “red box“. Thus, maximum 8 interfaces with installed radio
module and an RF Data Link PC module can communicate with one another. The radio call num-
ber is, to say so, the telephone number of an interface in the radio net. You can assign the
numbers 1 to 8 arbitrarily to up to 8 interfaces.

The Enable hook is nearly always set. However, you can deactivate a radio module in an interface,
if you just do not use it in a model and you would like to save current without dismantling the
module.

After you have made all the adjustments, you can save the adjustments in the interface with the
Write to interface button. As a rule, you will write the adjustments in the Flash memory. The
adjustments are then preserved, even if you switch the interface off. If you would only like to try
something out only briefly, you can however write the adjustments into the temporary memory as
well.

You need not care about the firmware version, that is the version of the internal control program
for the RF Data Link. ROBOPro prompts you to automatically update the firmware, if that should be
necessary.

In order to make communication possible between the two Tango robots, first connect one of the
two robots with the USB PC interface and open the interface test window. Possibly you must press
the COM-USB button before and select the interface. In the interface test window, change to the
partner info and adjust there the frequency 2 and the radio call number 1 and save the adjust-
ments with the Write to interface button. Now close the interface test window, connect the other
robot with the USB interface and adjust the frequency 2 and the radio call number 2.

Premises for the radio communication

Even if, as in the case of the two Tango robots, two interfaces change messages directly with one
another over the RF Data Link modules, the red PC radio module is necessary. It serves as switch-
ing center for all the other modules and must therefore be connected to the USB interface of a PC.
The PC must be switched on and may not change to a current saving or a sleep condition, so that
the PC radio module should be supplied with current. The PC radio module must also be adjusted
to the same frequency as the radio modules in the interfaces. The radio call number of the PC
radio module is adjusted to 0 and cannot be changed.

GB
ROBOPro

48

In order to adjust the frequency of the PC radio module, connect that PC module to the PC USB
interface. You can then adjust the frequency over the Info Partner of the Interface test window
exactly as in an Interface radio module . If the PC radio module cannot reach an interface with
built-in radio module, for example because the frequency is not yet correct, you receive an error
message when you open the Interface test the window. However, the error message only refers to
the fact that no interface was found and that no inputs and outputs are thus available. However,
you can make the adjustments in the Info window despite the error message.

Interface selection through the interface (COM/USB) button

So far you probably worked mostly with only one ROBO interface.
As soon as you have connected to the PC more than one ROBO
interface or a PC radio module with more than one ROBO inter-
face accessible over radio, the question arises, to which interface
is to be connected the ROBOPro when a program in on-line
mode is started, a program download is made or the Interface
test window is opened. When you press the button for the inter-
face options (COM-USB button), the interface selection first
appears. When you select USB there and ROBOPro finds more
than one interface at the USB bus or in the radio network, the
selection window is indicated on the right. In this example, the
PC radio module of a RF Data Link is connected to the USB
interface of the PC. The PC radio module has found by radio two
ROBO interfaces with RF Data Link, which have the radio call numbers 1 and 2. You can select in
this window which of the two interfaces is to be used for future operations. As a rule, you select
here one of the interfaces, and not the ROBO RF Data Link.

If you select the RF Data Link as in the picture above, ROBOPro connects to the interface with the
smallest radio call number, 1 in the example. There is however an important difference: When the
RF DataLink proper is selected, the adjustments in the Info Partner of the Interface test window
refer to the PC radio module proper, and not to the interface radio module in the interface connect-
ed by radio. Thus you can change, for example, the frequency of both the interface radio modules
and of the PC radio module by radio, without having to connect the interfaces to the PC over a
USB cable. To that purpose, you first select, over the COM/USB button, one of the interfaces,
change the frequency by means of the interface test the window and close again the interface test
the window. If now you press again the COM/USB button, the interface with the changed frequen-
cy has disappeared from the list, since it can no more be achieved by the PC radio module. Select
now the second interface and change the frequency. If you press once again the COM/USB button,
probably no more selection list is indicated, because the PC radio module is the only accessible
unit. If you have still connected further interfaces directly to USB and the selection list appears,
select the PC radio module. When opening the interface test, now an error message appears that
no interface was found. However, that does not disturb any more, since you would only like to
change the adjustments of the Data Link. If you change the frequency of the PC radio module and
press again the COM/USB button, the PC radio module and both the interfaces are indicated again,
because now all the three have again the same frequency.

Why have you to change first the frequencies of the interfaces and only at last the frequency of the
PC module? Try out what happened, if you first change the frequency of the PC module.

It can moreover happen that changes should only have an effect after a few seconds. If the selec-
tion list of the COM/USB button does not correspond to the current configuration, simply press the

GB
ROBOPro

49

COM/USB button once again. If you cannot any more reach an interface by radio, connect it at
the best directly to the PC USB interface and control the RF DATA Link adjustments for the
interface.

4.5.2 Bluetooth settings for the TXT or TX Controller

Every TXT or TX Controller is given its
own radio call number between 1 and 8,
which you can allocate in the window for
the Bluetooth settings. In ROBOPro
programs, the radio call number is used
like a telephone number to identify the
individual controllers. First of all, you
must log all interfaces onto the PC as
Bluetooth modules. The instructions for
the TXT or TX Controller describe how to
this†. To proceed, your PC needs
either an integrated Bluetooth interface
of a USB Bluetooth adapter. Once all
controllers are logged onto the PC and
switched on, open ROBO Pro.
Press the COM/USB-Button and define
one TXT or TX Controller which will be connected via USB or Bluetooth with ROBO Pro in online
mode. Then open the Bluetooth settings window in ROBO Pro using the menu item Edit Bluetooth
or press the button for the Bluetooth toolbar. Press "Scan" to fill the list with TXT or TX Controllers.

Depending on which Bluetooth adapter you use, it may happen that the interface names
don't appear in the list. In this case, you can select the corresponding COM interfaces each in
turn by pressing the COM/USB button and then doing an interface test to find out which interface is
which. You also have to manually assign the corresponding COM to each TXT or TX Controller
under Set COM Port. But in most cases, this happens automatically.

The list with detected TXT or TX Controllers is always sorted according to radio call number (RCN).
You can change the radio call number by selecting a row in the list and pressing up or down. For
example, if you select the row for radio call number 2 and press up, the controller moves one row
upwards and is given the radio call number 1. The controller from row 1 moves one row down-
wards and is then given the radio call number 2. You can also select a row, enter the radio call
number in the text box next to the Set button and then press Set.

Once you have adjusted the radio call numbers, you then have to say which controller is to take
part in the radio transmission. As a rule, that will be all the controllers in the list. However,
in schools it is possible for controllers from other experimenting groups to appear in the list. To
select the controllers for communicating with your program, place a tick at the start of the row in
the list.

Bluetooth

settings

† For Bluetooth experts who can manage without instructions: the main code is 1234.

GB
ROBOPro

50

As it is tedious to download several programs on several
interfaces, ROBOPro offers the possibility of allocating
every TXT or TX Controller a ROBOPro .rpp file in the
list. Please use the Assign and Clear buttons. The
download window offers the option of downloading all
these programs at once.

Central control

The exchange of messages between 3 or more controllers uses a star topology. One of the con-
trollers acts as central control as shown here on the left. For controller 2 to exchange messages
with controller 3, the messages are sent via the central control. It is usually unimportant which
controller assumes the central control function. However, it DOES matter which controller acts as
central control for mobile robots that can move outside the radio range. This selection is
again made in the window for Bluetooth settings. Another important point is that the online
connection with the central control is more difficult and less reliable. This is because the PC plays
the role of central control for the online connection, while the central controller acts as control
centre for some Bluetooth connections, but not for others. As already indicated, this does actually
work but it takes much longer to set up a connection.

Where are which settings saved?

The controller selection (tick at the start of the row) and the allocation of ROBOPro programs to
controllers is part of a ROBOPro program. With multiple downloads, all programs assume the
Bluetooth settings from the program that started the download. On the other hand, the allocation of
radio call numbers and controllers is not saved in the ROBOPro program but on the PC. This
makes it easier to swap ROBOPro programs with others.

Central control

Controller 2 Controller 3 Controller 4

GB
ROBOPro

51

5 Level 3: Variables, panels & Co

Just imagine that you discover a fascinating machine in a preciously unexplored side corridor of a
museum, and you just have to emulate it in fischertechnik. But while investigating the machine you
lose track of time, and don’t notice that all the other visitors are leaving the museum. Only when
the museum is already closed have you studied the machine sufficiently thoroughly to be able to
make a replica. But unfortunately you must first spend an unpleasant night alone in the museum
before you can set to work. So that this doesn’t happen again, you go to the curator of the museum
and volunteer to program a visitor counter, which will count all the visitors on the way in and on the
way out again, and switch on a red warning lamp as long as there are still visitors in the museum.
But how do you do that? How can you count something with ROBO Pro? The answer: with varia-
bles.

5.1 Variables and commands

A variable is an element that can hold a
number. In the variable Properties window
you enter a Name, which should give some
hint as to what sort of number is stored in

the variable. Under Initial value you can specify what number
should be stored in the variable at the beginning of the program.
Data type determines whether the variable should be a whole
number (for example, 1, 2 or 3) or a decimal, also called floating
point number (for example, 1.3457). For now, we will only use
whole numbers. The Life time setting will be explained in Section
8.4.2, Local variables on page 92.

You can alter the stored value by sending commands to the
variable. A variable understands three different commands: =, +
and –. The = command replaces the stored value with a new value. The + and – commands add
something to or subtract something from the stored number.

Think about resetting ROBO Pro in the Level menu to Level 3 or higher!

GB
ROBOPro

52

You send the commands to the variable with a
Command element. Like most other program
elements, the Command element has a blue
program entry above and a blue program exit
below. But to the right it has something quite

new, an orange connection. That is a command output. Whenever
the Command element is executed, it sends a command through
this output to all elements connected to it. The variable has a
corresponding command input on the left-hand side. When you
connect the command output with the command input, instead of
the usual blue connecting line, ROBO Pro draws an orange line.
Program elements can send commands or messages over these
orange lines, and thus exchange information.

The program on the right initially sends the variable Var an =1
command. As a rule, a command consists of the actual command,
such as =, and a value such as 1. The =1 command sets the
variable to 1. After a second, the program sends the variable a +1
command. The variable thereupon adds 1 to its previous value
and now has the value 2. After a further second the program sends
a –1 command. Thereupon the variable has the value 1 again.

Now try to draw this simple program in ROBO Pro. You will find the command elements in the
Commands group, the variables in the group Variable, Timer, If you execute the program in
online mode, you will see how the value of the variable changes.

That’s all very well and good, you may be saying: I can look at the
value of the variable, but just what do I do with it? Quite simple: The
variable has an orange connection on the right, over which it sends
messages with its current value to all connected elements. There
are some elements in ROBO Pro with an orange input on the left,
which you can link with the output of the variable. So, for example, in
the group Branch, Wait... you will find a Yes / No Branch element
which doesn’t query an input directly, but rather can request any
value at all, among others the value of a variable.

So the visitor counter for the museum can be programmed as follows:

GB
ROBOPro

53

The entry turnstile operates the sensor on I1; the exit turnstile operates the sensor on I2. As soon
as I1 is pressed, the program sends a +1 command to the variable Counter. Then the program
waits until the sensor on I1 is released again. With the sensor for the exit on I2, the behavior is
exactly the same, except that here a –1 command is sent to the variable Counter. Every time the
counter changes, the state of the count is checked. If the variable Counter has a value >0, the red
warning lamp on M1 is switched on; otherwise it’s switched off.

Copy the above program and try it out. As soon as you press the sensor on I1 and release it again,
the warning light on M1 lights up. If you operate the sensor on I2, it goes out again. If you operate
I1 several times, you must operate I2 the same number of times to make the warning lamp go off
again. Now try to see what happens if first 5 visitors come, then 2 go, then another 3 come. How
many times do you have to operate the sensor on I2 to make the warning lamp go off again?

5.2 Variables and multiple processes

Perhaps you noticed while testing the visitor counter that problems arise if switches on I1 and I2
are pressed simultaneously. As long as one switch is pressed down, the program can’t react to
the other one. Since the visitors at the entrance and the exit may very well pass through the re-
spective turnstiles at the same time, this leads to counting errors. You can avoid these errors by
using several parallel processes. Up until now, all programs have had only one Start element. But
there is nothing to stop you from using several Start elements. All program paths with their own
Start element will then be worked through concurrently. So experts talk about concurrent pro-
cesses. Using this technique, you can change the visitor counter program as follows:

Now independent processes are used for I1 and I2. If the sensor on I1 is pressed, the process for
I2 remains independent of this and can continue to monitor the sensor on I2. A separate process is
also used to query count values and to switch the warning lamp on and off.

As you see, there is no problem about accessing a variable from several processes. You can send
a variable commands from several processes and you can use the value of the variable in several
processes. So variables are very well suited for exchanging information between processes.

The museum curator is so enthused by your brilliant visitor counter that he immediately asks you
for the solution to another problem: The museum has installed a new exhibit. But as all the visitors
want to see the new exhibit, there is such a crush there that nobody can see anything at all any
more. So the curator would like to limit the number of visitors in the exhibition area to 10. The
curator has installed a turnstile at the entry and exit respectively of the exhibit. The turnstile at the
entry may be locked electronically. Now he only needs a competent program developer: you!

Try to develop the described program with ROBO Pro. Essentially, it functions like the visitor
counter. You can simulate the electronic locking of the entry with a red lamp on M1, which should
be switched on when there are 10 visitors in the exhibition.

GB
ROBOPro

54

5.3 Panels

After you solve the problem with the exhibit, the museum curator has yet another assignment for
you. He would like to know how many people visit his museum in one day. Of course a program
that can count is no problem for you, but how can you display the value? Of course, you could
execute the program in online mode, which allows you to follow the values of variables. But for a
computer-illiterate like the curator, that is rather complicated. Something simpler is required!

For cases like this, ROBO Pro has panels. A panel is a page of your own on which you can put
displays and control buttons. Load your visitor counting program and, in the function bar, switch to
Panel.

Initially, the control panel is an empty gray space. Onto this area you place
displays and control elements which you find in the element group window und
Panel elements. Among the panel elements you will find buttons, slider con-
trols and the like. Under Displays you will find text displays, display lamps, and
displays with rotary pointers.

For the visitor counter, you take a Text display (the color doesn’t

 matter) from the Panel elements / displays element window, and
position it in the panel. This display is now required to show

the number of visitors to the museum.

But first you must add to your program a second variable, which will count the number of visitors at
the entrance without deducting them from the total again at the exit. In the function bar, you switch
back to Functions, and insert the variable Total as follows:

As you can see, a Command element can also be used to send a command to two variables at the
same time. The variable Total does not receive the –1 commands, because commands are only
transmitted along the orange lines in the direction of the arrows. On the other hand, the +1 com-

Caution: A panel is part of a subprogram. If you have subprograms, make sure you create
the panel under Main program and not under a subprogram! Later on, as a “pro”, you will be
able to create multiple panels.

If you have drawn a panel and it has thereafter suddenly disappeared, then presumably you
selected a subprogram in the subprogram bar. Switch back to Main program and your panel
is sure to be there again.

GB
ROBOPro

55

mands are passed to both variables. But this is only done here as an example. As a rule it is
simpler and more transparent to use a second Command element.

So, now you have a text display in the panel and a variable which you
would like to present in the display. Now how do we link the two? As the
text display and the variable are on separate pages, you would have trouble
trying to connect the two with a line. For this reason there is a special

element that transmits a value that is to be presented in a panel to the corresponding display. You
will find the element Panel output, depicted above, at the end of the Inputs, outputs group. Insert
one of these Panel output elements into your program next to the Total variable, and join the right-
hand connection of the variable to the Panel output’s connection.

As you will normally have more than one display in a panel, you still need to
let the panel output know which display to send the variable values to. This is
done quite simply by means of the Properties window of the element. If you
right-click on the Panel output element, you will see a list of all the displays
that have been inserted so far into a panel. As every subprogram can have its
own panel, the panels are listed according to subprogram. In our example,
there are no subprograms, only the main program. Within this there is one
display with the name Text. Select this display and click on OK.

As soon as you have linked the Panel output with a display, the symbol and
the inscription change accordingly. The panel out we’re using produces a
connection with the text display named Text in the (sub)program MAIN.

Once you have inserted the panel output and linked it to the text display, the program looks like
this:

Try it out straight away. As soon as you have started the program in online mode, the display in the
panel shows the number of visitors that have passed through the turnstile at the entry.

Hint: If you want to use more than one display in a panel, it is important that you give every
display a different name, so that you can distinguish between them when linking them with
the program. To do this, you right-click on the display in the panel. There, you can enter a

Tip: If orange lines branch, it is often more practical to draw the lines from their target to their
origin. If you would like for example to draw the line to the variable Total, click first on the in-
put to the variable Total and then move the line backwards to the branch point. If, on the other
hand, you want to start an orange line on an existing orange line, you will have to double-click

(with the left mouse button) on the point where the new line is to begin.

GB
ROBOPro

56

The program is not quite perfect yet. What is still missing is a switch to reset the counter. For this
purpose, however, we don’t want to use a normal pushbutton switch, but rather a button we can
push on the panel.

You will find this operating button in the element window under the group Oper-

 ating / Control elements. In the function bar, switch to Panel and insert a button
 into your panel next to the text display. The inscription Button is of course not

quite appropriate, but it can easily be change using the button’s Properties window. Right-click on
the button, enter for example 0000 as Inscription and confirm with OK.

Exactly as in the case of the text display, we also need a program element
that will link the button to the program. So start by switching back to Func-
tion in the function bar. You will find the illustrated Panel input element in
the Inputs, outputs group in the element window. Position it in the flow

chart below the existing program.

Now you still have to link the panel input with the button in the panel.
To do this, you right-click on the Panel input element. As with displays,
the control elements are listed according to subprogram, as every
subprogram can have its own panel. Now select the 0000 button and
confirm with OK.

You may have noticed that it is possible to set this element to all sorts
of inputs through the tab bar of the Properties window. However, this
will not be explained until Section 5.5 - Command inputs for
subprograms.

The value delivered by a panel input is queried with a Branch element.
You have already used this element to query variables. The complete
program with the “set-to-zero” function now looks like this:

name under ID / Name. Then, if you connect a panel output with the display, this name will
appear in the selection window of the panel output. As we have only one display for the mo-
ment, however, the name is not important, and we retain the name Text.

GB
ROBOPro

57

Whenever the 0000 button is pressed, an =0 command is sent to the Total counter and sets the
counter to zero.

5.4 Timers

After your triumphs, the museum curator does know what he could do without you, and so appoints
you the museum’s computer consultant. Of course, a position like this carries a lot of glory and
renown with it, but also a lot of work, for example the following: The museum has many models
that move when a button is pressed. But some visitors push for rather a long time on the buttons,
so that the models overheat and keep needing to be sent off for repairs. Now the curator would the
models to run for as long as the button is pressed, but only up to a maximum of 30 seconds at a
time. Once the model has run, it should then take a pause of 15 seconds before it can be switched
on again.

Hmm, no problem, you may be thinking. A few time delays, a few program branches, and you’re
done. Feel free to try it! After a while you will come to the conclusion that it is not so simple, and for
two reasons:

 During the period of 30 seconds the program must query the button to establish whether the
button is released before the 30 seconds expires. OK, granted, you can solve that with two
concurrent processes, see Section 5.2 Variables and multiple processes on page 53.

 If a visitor releases the button after 5 seconds, and then presses it again after 15 seconds,
the 30 second time delay must be started all over again. But the time delay has only been
running for 5 + 15 = 20 seconds, and so is still active. Even with processes running in parallel,
you can’t start a time delay over again. Perhaps it would work in three processes with two
time delays which you start in alternation, but thinking this through will bring on a headache.

GB
ROBOPro

58

Isn’t there a simpler way to do this? Yes, there is: timer
variables, or timers for short. Initially, a timer functions
like a normal variable. The timer keeps track of a number
and you can alter the number with =, + and – commands.
What distinguishes a timer, however, is that it automati-
cally counts down the number at regular intervals until it
reaches 0. The time interval between decrements can be
set in steps between one thousandth of a second and a
minute. Many time control problems can be solved more
elegantly with timers than with time delays. Do you see
yet how you can solve the problem with a timer?

Correct: As soon as the visitor presses the button on I1,
you start the model and then set the timer, using an
= command, on 30 x 1 second = 30 seconds. Then you
go into a loop, checking whether the period of 30 seconds
has expired or whether the switch on I1 has been re-
leased. When either of these stopping criteria is fulfilled,
you stop the model and wait 15 seconds. Then it all starts
again from the beginning.

Admittedly, the programs are starting to get more de-
manding. But just try to solve the following exercise:
Develop a program with the same functionality but using
time delays instead of timers! Note: This is a very difficult
exercise and only intended for those who like to tinker
around for a while longer with a puzzle every so often!
Everyone else should simply proceed to the next section.
There are two approaches to solving this exercise: You can use two time delays which you start
alternately in their own processes. As there is an off time of 15 seconds, one of the two time delays
will have expired by the end of the second cycle at the latest, so that it can then be started over
again. Another alternative would be to simulate a timer with a normal variable and a Time delay
element with a short time delay of say one second.

5.5 Command inputs for subprograms

As always, your program works brilliantly, and fischertechnik is pleased, because all the models in
the museum are being equipped with the ROBO Interface. Only, like public institutions everywhere,
the museum is strapped for cash. So the curator would like to make do with as few Interfaces as
possible. But then a ROBO Interface has four motor outputs and also enough inputs to control four
models. As most models can only turn in one direction, you can control as many as 8 models via
the single-pole outputs O1 to O8.

This of course saves the curator a lot of money. But on the other hand you now have to copy the
program 7 times and adjust all the inputs and outputs to suit. Or maybe not? Couldn’t you also do
that with subprograms?

Indeed you could, but here a problem emerges: If you use the usual
sensor queries from the Basic elements group in a subprogram, every
call of the subprogram queries the same sensors and controls the
same motors. The reason is that, in a Motor output element for

GB
ROBOPro

59

example, the control command for the motor (right, left, or stop) and the motor output number
(M1,M2,…M8) form a unit. As there is only one version of the subprogram, the same motor
always appears in it. If you alter the motor number for one subprogram call, it will also be
altered for all occurring calls of the subprogram. So, once again, you’d have to copy the
subprogram 7 times, give every subprogram a different name and go all the way through
manually adjusting the inputs and outputs.

But there is a much more elegant solution to this problem. The trick is to
separate the control commands from the motor symbols. Then you can put
the control commands (left, right, stop) in the subprogram and the
Motor elements in the main program. In the subprogram, using a Command
element, which you have already encountered with variables, you then send the left, right or stop
commands to the main program, where you can then dispatch them to the various motors. For a
motor there is a Motor element that only represents a motor, without determining what the motor is
to do. This element has a command input, to which you can send commands. You can replace
elements from the Basic elements group with a Command element and a Motor element as
follows:

In the upper row you see Motor elements from the Basic elements group. In the second row are
depicted the corresponding combinations, achieving exactly the same effect, consisting of a com-
mand element from the Commands group with a motor element from the Inputs, output group. In
fact, the upper elements are just abbreviations or simplifications for the combinations in the lower
row. Each sends a left, right or stop command to motor M1.

The same also applies to querying sensors:

In the upper row, you see again elements from the Basic elements group. In the lower row you
will find, for each of these basic elements, a corresponding combination of a digital input and an
element from the group Branch, Wait, You will find the orange Digital input element, like the
Motor element, in the group Inputs, outputs.

Using this trick, you can separate the logic of a program from the inputs and outputs. But there is
still something missing. If the motor and sensor elements are supposed to be in the main program
and the commands in a subprogram, there must of course be a way of linking the sensor and

GB
ROBOPro

60

 motor elements with the subprogram. You will find the connection elements needed for this in the
Subprogram I/O group.

Via a subprogram command input, you can send commands to a subprogram

 from outside. The Digital input element (sensor) sends its new value over the
orange line if the state of the input changes (with what is known as an “= com-
 mand”). In the element’s dialog field you can give the input a name.

Via a subprogram command output you can send commands from a subprogram.

 So, for example, you can send the commands left, right, or stop from a subpro-
 gram to a motor. For this element too, you can enter a name in the dialog field.

Now you have everything you need for your multiple-model timer with subprograms.

Main program Subprogram Time

The subprogram Time is almost exactly the same as the program in the previous section. The
Wait for digital input elements at the beginning and in the loop have, however, been replaced by
Wait for elements, with data connections for orange lines, from the group Branch, Wait, Both
are linked to the subprogram command input Sensor. The two motor control elements at the
beginning and end of the program have been replaced by command elements. Both send their
commands to the subprogram command output Motor.

The subprogram Time is called four times in the main program. The subprogram command input
Sensor has automatically generated the orange connection S on the left-hand side of the green
subprogram symbol. The connection M on the right-hand side got there because of the subpro-
gram command output Motor. The connection S of the subprogram symbol is connected each in
case with one of the sensors I1 to I4 respectively. One of the motors M1 to M4 respectively is
connected in each case to the connection M. In this way, each calling of the subprogram Time
queries a different sensor and controls a different motor!

Try copying the above subprogram and main program and trying it out. You must draw the subpro-
gram first, because otherwise you won’t be able to insert the subprogram into the main program. If

GB
ROBOPro

61

you have difficulties with the subprogram, refer once again to Chapter 4 - Level 2: Working with
subprograms on page 28.

5.6 Lists (Arrays)

Now that all the trial equipment in the museum has been fitted with your cost-saving control system,
there is not long to wait for the curator’s next problem: In a space with very valuable antique
exhibits, harmful temperature variations have been occurring recently. You presume that this has
something to do with the level of insolation. To demonstrate this dependence, you would like to
build a device which records the level of illumination and the temperature. Of course, the ROBO
Interface has several analog inputs and you already know how to store values with the aid of
variables. So the whole thing should be no problem, or should it? To record two values every five
minutes over 12 hours requires 288 variables! But that would make for a gigantic and less than
conspicuous program. Can we perhaps simplify this using subprograms again? We can, but there
is a much better way. The List element (programmers call it an “array”).

You can store not just one value but a whole list of values in a list. Initially, as a rule, a list is
empty. If you send an Append command to the upper left data input marked W, the value
specified in this command element will be appended to the end of the list. You can set the
maximum length of the list between 1 and 32767 through the Properties window of the List ele-
ment. This makes the program to record temperature and illumination quite simple:

The temperature sensor is connected to
analog input AX and the brightness sensor to
analog input AY. The program reads in both
values every five minutes in a loop, and adds
them to their respective lists with the Append
command.

To test the program, it is helpful to reduce the loop delay from 5 minutes to a few seconds.

You must now be wondering how you can read the stored values back from the list. There are two
possibilities here: You can read the values as for an ordinary variable and process them further in
your program. As the list contains more than one element, you first select the number of the ele-
ment you want to retrieve at the left data input, marked I. Then the value of this element is given
out at the data output R in the right-hand side.

Note: You find further information to command inputs in the Section 6.3 -

Sending arbitrary commands to subprograms on page 68.

Hint: When inserting the command element
you must activate the option Data input for
command value in the Properties window.
Then a data input will appear on the left of
the command element, and you can con-
nect the analog input to it.

GB
ROBOPro

62

But ROBO Pro can also store all the values
from the list in a file on your computer, which
you can then process further for example in
Excel. As in the present case you only want to
look at and compare the recorded illumination
levels and temperatures, this is doubtless more
practical. ROBO Pro saves the values in what
is called a CSV file (comma-separated values).
CSV files are text files which contain one or
more columns each with a sequence of
data. Thus you can also save several
series of measurements such as
temperature and illumination in separate
columns of a CSV file. The columns are
separated with commas. In countries where
one writes 0.5 with a comma and not 0.5
with a period (e.g. Germany), a semicolon (;)
is often used as the column separator. If you
have problems exchanging CSV files between
ROBO Pro and, for example, Microsoft Excel,
you can change the Column separator in the
Properties window of the list.

You can set the name of the CSV file and the column in which to store the contents of a list in the
list’s Properties window under Save CSV file. The data are saved when the program terminates in
online mode, or, if you select the item Save CSV files in the File menu, while the program is still
running (online or download mode). In download mode, you can separate the ROBO Interface from
the PC for data recording and reconnect it for saving.

After you have executed the above program in online mode, you can open the .CSV file created
from the data by ROBO Pro in Microsoft Excel or some other spreadsheet program. If you don’t
have a spreadsheet program, you can also use the Windows editor (Notepad), which you
will usually find in the windows Start menu under Accessories.

As long as the program is still running in online mode, you can also look at the data in a list by
right-clicking on the List element.

5.7 Operators

The illumination- and temperature-recording program worked well, but it became apparent from the
recorded data that the temperature in the exhibition space of the museum has nothing to do with
the sun. It has been established that some visitors have confused the airconditioning control in the
exhibition space with a model control, and have been busily tinkering around with it. No wonder the
temperature in the exhibition space has gone crazy!

But this problem can be easily avoided with an electronic combination lock. The combination lock
is to have a keypad with keys 1 to 6. If three figures are entered correctly one after another, the
combination lock should release the climate-control cover by means of a magnet.

GB
ROBOPro

63

At first sight, such a lock is quite simple: The program simply waits until
the right keys have been pressed in the right order. A program like this
for the combination 3-5-2 can be seen on the right. But, on closer exam-
ination, this program has a problem. The lock can be quite easily picked,
by pressing all keys from 1 to 6 three times in succession. In that way,
the right key has always been pressed in every case. As Albert Einstein
put it so aptly: “Things should be made as simple as possible—but no
simpler.” So the program must enquire not only whether the right keys
are pressed, but also whether any wrong keys are pressed. Now the
program looks like this:

This program opens the lock only when the keys 3-5-2 are pressed without any other key being
pressed in between. If for example the key 3 is pressed, the program first waits until the key is
released again. If any key other than 5 is pressed next, the program starts again from the begin-
ning. So the program works correctly, but it is neither simple nor conspicuous. Moreover, it is very
difficult to change the code. But don’t worry; it can also be done simply and correctly, using opera-
tors. There are various sorts of operators. You will find them under Program elements in the
group Operators. For the combination lock, we first need an OR operator.

Several signals can be connected to the inputs of the OR operator. The operator
always yields 1 whenever at least one of the inputs is 1 (or >0). If several pushbut-
ton sensors are connected to the inputs of the OR operator, the output of
the operator is always 1 when at least one of the buttons is pressed. The number
of inputs can be set via the operator’s Properties window to up to 26. So all 6 keys
can be connected to one operator. Perhaps you are asking yourself how we can use
this to simplify the combination lock? Quite simple: with the operator you can initially
wait in each step until any key is pressed. Then you can check whether it is the
right key. Then you need 2 rather than 7 program elements per digit.

GB
ROBOPro

64

The buttons on inputs I1 to I6 are bundled together via an OR operator with 6 inputs. If at least one
of the buttons is pressed, the OR operator yields an output value of 1; otherwise 0. With a Wait for
element, the program waits until one of the buttons is pressed. Following this, we test immediately
whether it was the right button. If so, we wait for another key to be pressed. If a wrong button was
pressed, the program starts again from the beginning.

Alter the above program so that it uses panel elements in a panel instead of pushbutton sensors.
Start by drawing a panel with 6 buttons marked 1 to 6. Then alter the digital inputs via the Proper-
ties window. You have to replace the branches by branches with data input and panel inputs.

The combination lock now functions without a hitch, but it is still not so easy to change the code (3
5 2). The inputs in three branch elements must be altered. It is not necessary to change the code
regularly for the museum’s airconditioning system, but if, for example, you were using the lock for
an alarm system, you would presumably want to change the combination regularly. Of course, it
would be easier if the code could be stored in a variable. The code could even be changed auto-
matically. If, for example, a silent alarm is set off in the alarm system, the normal combination
could be replaced by a special alarm combination.

In order to compare the combination variable with the input, you must also store the input itself in a
variable. In the beginning the input variable should have the value 0. When you now press the 3
key, the variable should have a value of 3, with the next keystroke on the 5 key a value of 35, and
finally after pressing the 2 key a value of 352.

GB
ROBOPro

65

The combination lock with code variable has two processes. In the process on the left, a number is
assigned to each key with some times operators and a plus operator. The 1 key gets number 1,
the 2 key number 2, and so on. The keys return a value of 0 or 1, and if you multiply this value by a
fixed number X, a value of 0 or X results. As the values for unpressed keys are 0, you can add up
all the values and end up with the numerical key value. As soon as a key is pressed, the input
variable is set to 10 times the previous value plus the value of the key pressed. Multiplication by 10
shifts the existing value of the input variable one decimal place to the left (e.g. 35 becomes 350).

The process on the right waits until the OK key in the panel is pressed following input of the com-
bination. The code variable Code, which has the value 352 if the code is correctly entered,
is compared with the input variable. If they both have the same value, the opening magnet is
activated, not otherwise. Finally the input variable is reset to 0. The variables Entry and
Code are compared by comparing their difference with 0. You could also have use a Compare
element.

If you press two leys at the same time, the values of the keys are added. So, for example, if you
press 3 and 6 at the same time, the value 9 results. In this way you can build a super-secret lock,
in which sometimes several keys must be pressed at the same time. Think which keys in which
order you must press to open the lock with a code of 495. Don’t forget that the Wait for ... element
continues the program when the value increases, not only when it changes from 0 to 1.

Does the combination lock also work for 2- or 4-digit codes? If so, up to what number of digits does
it work, and why? And what about the other combination lock programs?

GB
ROBOPro

66

6 Level 4: User defined commands

In the level 3, you were extensively engaged in how you can process Data by means of commands
and you can, for example, steer motors. Thereby you used exclusively pre-defined commands like
the = command or the right, left and stop command. In Level 4, sending commands over orange
connections and using your own commands are now being linked with one another.

6.1 Processing of commands in a process

Surely, you have already written a program which controls a robot controlled via two wheels or a
tracked vehicle. All the same whether the vehicle is to run left, right, straight or backwards, you
must always give a right, left or stop command to two motors. And then you must always still note
which motor drives the left and which drives the right wheel and whether the motor must turn to the
left of or to the right, so that the vehicle drives forward. But a smart head as you has its head filled
with other things, ingenious ideas for example, and therefore cannot note such matters of minor
importance.

Naturally, this problem can be solved by applying subprograms for each operation, but it would be
still more elegant if you could write a subprogram, which, like a motor output, has an information
input, to which you then only need to send forward, backwards, left, right and stop commands and
then it controls two motors correctly.

Now you will surely argue that in the command element of ROBOPro there is in
fact a command to the left and one to the right, but no straight and no back-
wards command. But the good old command element is again and again good
for a surprise. Create only for fun a new program, drag an arbitrary command
element into the main program and simply enter once “Forward“ in the Charac-
teristic window, under Command. And you will observe... it works!

The next question is: what do you do with such an command element? Nevertheless, there is no
element which can process such commands. If you send, for example, the forward command to a
motor output and you try to start the program, ROBOPro will announce “No connected input can
process the Forward command“. Starting from the Level 4, there are two new quite inconspicuous,
however very efficient elements, which can process arbitrary commands: The “Command Wait"
element and the Command filter. You find both elements at the end of the Send, Receive element
group.

The task to develop a subprogram, through which a 2-wheel robot
may be controlled by means of the forward, backwards, right and left
commands, may be solved with both the elements. Let us try it first
with the nearby “Command Wait” element. You can send arbitrary
commands to this element over the command input C. However, the
element always only waits a completely determined command, which
you can adjust. After the element has received this command, the
program flux is branched to the Y output, otherwise to the N output.

As you know, there is an command in ROBOPro, consisting of a name and a number, the
command value. When the “Wait for Command” element has received the command it waits, the
command value is available at the V output.

Remember to change ROBO Pro in the Menu Level to level 4 (or higher)!

GB
ROBOPro

67

Therewith it is quite simple to make
the desired subprogram. In a con-
tinuous loop, every of the 5 possible
control commands is prompted with
one “Wait Command” element. After
an appropriate command has been
received, the command value is
passed on to the right and to the left
commands, which are sent to the
two motor outputs, M1 and M2. If the
subprogram receives, for example, a
“Var” command with the value 8, the
value 8 of the V output of the com-
mand filter is passed on to two
command elements, which then
send to the two motors a Right
command with this value as speed.
As a matter of fact, it is not so practi-
cal to use here only one single Right
command element, which then sends
commands to both the motors. With
such constructions, it is often very
difficult to hold apart the two motor
command lines, so that then other
commands should often go to both
the engines.

In the example, the V output of the
Stop command filter is not connect-
ed, because the Stop command
elements need no value.

6.2 The command filter

The task in the previous section can also be solved with the command filter.
With the command filter, you can, to say so, rename commands. When a
certain command is sent to the left input, the element sends another com-
mand to the elements which are connected to the right output, but with the
same command value as the command received at the input. Thus, you can make a motor control
command, for example from one = command, such as Right or Left. With the Command
filter, however, you can also convert, in particular, your own arbitrary commands to ROBOPro
standard commands, so that you can release an action with your own commands.

GB
ROBOPro

68

In the illustration at the right, you see
how you can configure the sub-
program for controlling a 2-wheel
robot with the command filter. The
top command filter, for example,
converts the cw command to a =
command. The motor outputs can
also process = commands with a
value from -8 to 8. Since with a
clockwise rotation to the right of
the model the two motors should
turn into different directions, the
value of the = command for the
motor M2 is made negative with
one - operator. On the contrary,
with the Left command, the value
for the motor M1 becomes
negative. Forward and backwards
are simpler, because both the
engines turn into the same direction.

You need not necessarily change the commands with the Command filter. The last command filter
has the Stop command as both Input and Output command. With this element, the Stop
commands are passed on directly to the motors. However, you need anyhow a command filter, so
that other commands, as cw or ccw, should not be sent directly to the motor outputs.

The great advantage of the command filter in relation to Wait at the Command element in the
previous section is that you need not a process. That saves memory space and processing occurs
immediately and not only with the next process change-over.

With the application of the command filter in this way, you must take care that you do not intermin-
gle the Data lines for the two motors. It is easiest, if, as in the picture above, all the final arrows
end on only one Data line. Sometimes it is also easier to use two command filters for a command,
so that you have two separate outputs.

With the program above, the robot turns on the spot with the cw command. Try to change the
program in such a way that M1 moves and M2 stands. You need for that two command filters for
the Right command. One converts the command into one = command, the other one into a stop
command. The command value is ignored with a stop command.

6.3 Sending arbitrary commands to subprograms

In the section 5.5 - Command inputs for subprograms
you have already known command inputs for sub
programs. However, you have connected there only
digital or analogue input elements to the command
inputs. Such elements always send one = command,
if the value of the input changes. If you would like to
send another command to a command input of a
subprogram, you must indicate that in the
Characteristic window of the command input. Starting
from level 4, in the Characteristic window a new option,

GB
ROBOPro

69

Passing mechanism, was added.

If you select Command ' =' only here, you can only send = commands to the appropriate input of a
subprogram request. In addition, the last = command is automatically repeated, when the sub-
program starts. Otherwise, the subprogram input would not have the correct value when the sub-
program starts. Just imagine that a digital input element is connected to the subprogram input.
These elements only send commands if the value at the input of the interface changes. If now the
input is closed, the digital input element sends one = 1 command. When the subprogram is started
after the command was sent, it is important that the command is sent again, after the subprogram
is started. Otherwise the entrance would have a wrong value, until the element connected to the
subprogram input changes again its value.

But this transmission automatic can also be disturbing and is rather unwanted with most com-
mands. When you send, for example, one Start or a +1 command to a subprogram, as a rule, you
would not like that this should be repeated automatically. Therefore commands are not sent re-
peatedly, when you select the Any commands option.

Even if you send a = command to an Any Command input, the commands are not repeated
with the subprogram start. It may then occur that the value which the subprogram input
passes on should not correspond to the real value value at the input.

GB
ROBOPro

70

7 Controlling several Interfaces

One ROBO TX Controller is enough to control quite resource-intensive models. However, maybe
some people like things a bit more extensive. If you can’t get by with the existing inputs and out-
puts, you can connect up to 8 additional ROBO TX Controller to your ROBO TX Controller via the 6
pin extension connector. For those who still use the earlier ROBO Interface, there is also the
possibility of controlling up to 3 ROBO Interfaces (each possibly with 3 I/O extensions) in online
mode from your program.

7.1 Controlling Extensions

Perhaps you have already noticed the drop-down menu
under Interface / Extension in the Properties windows for
input and output elements. There you can select on which
Interface or Extension Module an input or output is to be
found. Provided you haven’t made any other settings (see
next Section), the list has the following entries:

 IF1: This is the ROBO TX Controller which can be
connected to the PC as a so-called master.

 EM1..EM3: These are the ROBO TX
Controller which are connected to the master as
extensions.

So it is quite easy to control extension modules. You only
need to choose the desired Controller (master or exten-
sion 1-8) for inputs and outputs. The operating manual of your ROBO TX Controller explains how
to set up a ROBO TX Controller such that it will function as an extension.

7.2 TXT Controller, TX Controller and ROBO Interface together

If you want to control a ROBOTICS TXT Controller, a ROBO TX Controller and a ROBO Interface
simultaneously from one program, this only works in online mode. You can, for instance, connect a
ROBO TX Controller with 8 extensions to a USB port. In addition, you can connect a ROBO Inter-
face to COM1 or USB. This can include up to 3 ROBO I/O extensions. If this is not enough for you,
you can use in addition a ROBOTICS TXT Controller, also with Extension. In order to define the
intended Interface in the Properties window of an input or output, you have to configure the Inter-
face assignment.

As long as you do not make different settings, you will find the entries IF1, EM1-EM8 in the Inter-
face / Extension drop-down menu. But you can add to or modify this list. There can be several
reasons to do this:

 For greater comprehensibility you might want, rather than calling them IF1 or EM1, to give the
modules names which specify which part of your machine or your robot the module is control-
ling.

 You might want to exchange two extension modules (e.g. EM1 and EM2), for ease of cabling,
without changing your program.

 You might want to run a program, originally written for one ROBO TX Controller with more
than 3 extensions, by using several ROBO Interfaces.

GB
ROBOPro

71

You can do all this quite easily by changing the Interface assignment in the Properties window of the
main program.

Here you can see which modules (master or exten-
sion) have been assigned to the names IF1 to EM8.
With the New button, you can add a new Interface. If
you want to change an entry in the list, you select it
and click on Edit. In either case, the following win-
dow is displayed:

 Under Name you can change the name
used for the module. The name shouldn’t be too
long, because the space for the Interface name
in the graphic symbol is very small. If you
change this name, then you must usually also
change the module name in all input and
output elements that use this name.

 Under Extension you can specify whether the
name refers to an Interface or to one of the ex-
tension modules 1 to 8.

 Under Port you can select the port to which the
interface is connected. If you pick User selec-
tion here, the Interface used will be the one
you selected in the toolbar under COM/USB.
As long as you want to use only one ROBO TX Controller with several extension modules,
this is the simplest, because this way someone else can use your program unaltered. If you
are connecting additional ROBO Interfaces to your PC via USB, you specify here the port to
which the relevant Interface is connected.

 Under Interface you can specify which Interface you would like to use. If you connect an
earlier ROBO Interface or Intelligent Interface via a serial port, the program can detect auto-
matically which type of Interface is involved (Automatic selection).

 The right-hand part of the window is only important if you have connected different Interfaces
to the USB bus simultaneously. If, under Port, you click on USB, you can select one of the
Interfaces under USB Interface list.

COM/USB

GB
ROBOPro

72

 Under Remember Interface you can specify how the program remembers the selected
Interface. There are two possibilities here: If you select By serial number, the program
stores the serial number of the ROBO Interface. Even if you connect other ROBO Interfaces
to the USB bus and remove them, the program can always find the selected Interface again
by means of the serial number. On the other hand, this has the disadvantage that the pro-
gram now only works with an Interface with the same serial number. If you would like to use
the program with an Interface with a different serial number, then you must change either the
Interface assignment or the serial number of the Interface. To get around problems with serial
numbers, there is a second possibility: By sequence. If you select this item, the program
stores the sequential order rather than the serial number. Although this can lead to confusion
if you add or remove Interfaces on the USB bus, the program will run unaltered with any In-
terface.

7.3 Interface assignments in subprograms

Normally you will make all the Interface assignments for your program in the Properties window of
the main program. However, you can also enter Interface assignments in subprograms. Then you
can use the Interface assignments from both the main program and the subprogram in the subpro-
gram. If two assignments have the same name, the assignment in the subprogram takes
precedence. So, for example, you can define IF1 as accessing the main Interface in the main
program, but standing for an extension module in a particular subprogram. This is very practical if
you want to control a whole machine park, with every machine controlled by its own Interface. This
way, you can develop the control programs for the individual machines as independent programs,
with every main program accessing IF1. Later, you can install all the machine main programs as
subprograms in one overall program. In the overall program you then need only modify the Inter-
face assignments, but not the name in each individual input and output.

Caution: Unlike with the earlier ROBO Interface, only one ROBO TX Controller is connected
to a PC via USB or Bluetooth. To this so-called master you can connect up to 8 ROBO TX
Controllers as so-called extensions.

If you would like to operate more than one ROBO Interface on the USB bus, you must first
assign to each Interface its own serial number. By default, all ROBO Interfaces were supplied
with the same serial number, in order to void problems when exchanging Interfaces. The
Windows operating system, however, only detects Interfaces with different serial numbers.
You will learn more about this in Section 7.5 - Changing the ROBO Interface serial number on

page 73.

GB
ROBOPro

73

7.4 Tips and Tricks

If you want to run a program that was developed
for a ROBO Interface with 3 extension modules on
2 Intelligent Interfaces each with an extension
module, you can use the illustrated interface
assignment. This replaces extension modules 2
and 3 with a further Intelligent Interface with
extension module on COM2.

7.5 Changing the ROBO Interface
serial number

By default, all ROBO Interfaces and ROBO I/O-Extensions were supplied with the same serial
number. As long as you only want to use one ROBO Interface on a computer, this is more practical,
because in this way all Interfaces look the same to the computer, and there will be no problems
with changing Interfaces. But if you want to operate more than one Interface on a computer via
USB, you must alter the serial number of the Interface beforehand, so that the computer can
distinguish between the Interfaces and address them. On the other hand, if you address the Inter-
faces via several serial ports, this is not necessary.

The procedure for changing the serial number of an Interface is as follows:

 Connect the Interface singly to the computer’s USB bus.

 In the toolbar, switch to the programming environment for the ROBO Interface by pressing

the button Environment.

 Press the COM/USB button in the toolbar and select the USB port.

 Now open the Interface test window with the Test button on the toolbar and switch to the Info

Tab.

GB
ROBOPro

74

 Under Interface type the type of Interface, so, e.g.,
ROBO Interface or ROBO I/O Extension, is dis-
played.

 Under USB serial number you can set the serial
number used by the Interface at start-up. Every In-
terface has two built-in serial numbers, a default
serial number, which is 1 as long as you do not set
it to something else, and a unique serial number,
which you can’t reset and which is different for eve-
ry Interface. The simplest way to use more than one
Interface on the USB bus is to set the selection but-
ton for each Interface onto Use unique serial
number. Then every Interface is guaranteed to
have its own unmistakable serial number. If you use
many Interfaces for one model, however, it can be
very impractical to remember all the serial numbers.
In this case it is simpler to set the default serial
numbers of your Interfaces to, for example, 1, 2, 3,
etc., and use these. After you have reset or select-
ed the serial number, you still have to press the
button Write to Interface. After changing the serial
number, you must power down the Interface and reconnect it.

 Finally, under Update firmware, you can update the internal control program of your ROBO
Interface, if fischertechnik should ever offer a new version of the Interface firmware.

Caution: If the serial number is changed, the driver may have to be re-installed, which re-
quires administrator privileges under Windows. If you change the serial number but can’t re-
install the driver, because you lack administrator privileges, you can no longer access the In-
terface via USB. In this case, you power down the Interface and hold down the Port button
while powering up again. Then the Interface will start with the serial number 1, and will once
again be recognized by the already installed driver. However, this does not reset the serial
number permanently, i.e., on the next start-up without the Port button the previous serial
number will be restored. To reset the serial number permanently, you proceed as described
above.

GB
ROBOPro

75

8 Program element overview

All the program elements available in ROBO Pro are arranged by element group in the following,
and described in the order in which they are depicted in the element window.

8.1 Basic elements (Level 1)

8.1.1 Start

A process in a program always starts with a Start element. Without this program
element at the beginning, a process is not executed. If a program contains sev-
eral processes, each of these processes must begin with a Start component. The
various processes are then started simultaneously.

A start element has no properties that you can alter. For this reason, if you right-click on this ele-
ment, unlike most other elements, no Properties window is opened.

8.1.2 End

If a process is to be terminated, the exit of the last element is connected to an
End element. A process can also be terminated at various different places with
this element. There is also the possibility of linking the exits of different elements
to a single End component. But is also quite possible that a process is executed

as an endless loop and contains no End element.

The End element has no properties that you can alter. For this reason, if you right-click on this
component, unlike most other elements, no Properties window is opened.

8.1.3 Digital Branch

With this Branch you can
direct program control, ac-
cording to the state of one of
the digital inputs I1 to I8, in
one of two directions. If, for
example, a sensor on the

digital input is closed (=1), the program branches to
the 1 exit. On the other hand, if the input is open
(=0), the program branches to the 0 exit.

If you right-click on the element, the Properties
window is displayed:

 Buttons I1 to I8 allow you to enter which of
the universal inputs of the ROBO TX Control-
ler is to be queried.

 Buttons C1D-C4D allow you to select one of
the inputs C1-C4 of the ROBO TX Controller
as simple digital input.

GB
ROBOPro

76

 Buttons M1E-M4E allow you to query one of these four internal ROBO Pro inputs. They are
set to 1 as soon as a motor that is controlled by an Extended Motor Control element reach-
es a preset position.

 Under Interface / Extension you can select whether you want to use an input of the Inter-
face or an input of an extension module. You can find out more about this in Chapter 7 -
Controlling several Interfaces

 Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

 Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch. Normally the 1 exit is below and the 0 exit is on the right. But often it’s more
practical to have the 1 exit on the right. Press Interchange 1/0 connections and then the two
connections will be interchanged as soon as you close the window with OK.

8.1.4 Analog Branch

As well as the digital inputs, the
ROBO Interface has 6 Analog
inputs: 2 resistance inputs AX
and AY, two voltage inputs A1
and A1, as well as two inputs for
distances sensors D1 and D2.
With this Branch you can com-

pare the value of an analog input with a fixed number and,
according to the result of the comparison, branch to the Yes
(Y) or No (N) exit.

If you right-click on the element, the Properties window is
displayed:

 Under Analog input, you can select which one of the
universal inputs of the ROBO TX Controller is to be
queried.

 Under Interface / Extension you can select whether
you wish to use an input of the Interface or an input of
an extension module or of another Interface. You can
find further information about the various analog inputs in Chapter 7 - Controlling several
Interfaces

 Under Sensor type you select the sensor connected to the input. ROBO Pro selects the
Input mode of the universal input automatically according to the selected sensor. In Level 4
and above you can also select the Input type independent of the sensor.

Sensor Input mode Displayed value

NTC resistor,
photoresistor

Analog 5kOhm 0-5000 Ohm

Color sensor Analog10V 0-10000 mV

GB
ROBOPro

77

Ultrasound dis-
tance senor
(Version TX, item
number 133009
with 3 pin cable)

Distance 3-400 cm

 You can find further information about the various analog inputs in Section 8.7.2 - Counter
input on page 103.

 Under Condition you can select a comparison operator such as less than (<) or greater than
(>) and enter the comparison value. The comparison value should lie in the range from 0 to
1023. When you start a program containing a Branch for analog inputs in online mode, the
current analog value is displayed.

 Under Interchange Y/N connections you can exchange the position of the Y and N exits of
the Branch. Normally the Yes (Y) exit is below and the No (N) exit is on the right. But often it’s
more practical to have the Yes exit on the right. Press Interchange Y/N connections and the
Y and N connections are swapped as soon as you close the window with OK.

8.1.5 Time delay

With the Time delay element you can delay the
continued execution of a process by a period you
can set.

If you right-click on the element the Properties
window is displayed. Here you can enter the time delay in seconds,
minutes or hours. The time delay can be set over a range from one
millisecond (that’s one thousandth of a second) to 500 hours (that’s
just under three weeks). However, the time measurement becomes
less accurate with longer time delays.

The following list shows the accuracy for various time delays.

Time delay Accuracy

Up to 30 seconds 1/1000 second

Up to 5 minutes 1/100 second

Up to 50 minutes 1/10 second

Up to 8.3 hours 1 second

Up to 83 hours 10 second

Up to 500 hours 1 minute

8.1.6 Motor output

With the program element Motor output you can switch one of the
Interface’s two-pole outputs M1-M4. The outputs from the
Interface can be used for motors as well as for lamps or
electromagnets. With a motor, you would like to be able to set the
speed as well as the direction of rotation.

GB
ROBOPro

78

If you right-click on the element, the Properties window is
displayed:

 Under Motor output you can set which of the four
motor outputs M1 to M4 should be used.

 Under Interface / Extension you can select whether
you want to use an output of the Interface or an out-
put of an extension module or of another Interface.
You can find out more about this in Chapter 7 - Con-
trolling several Interfaces

 Under Image you can select an image to represent
the fischertechnik component connected to the out-
put.

 Under Action you set how the output is to be affect-
ed. You can run a motor to the left (counterclockwise) or to the right (clockwise) or stop it. If
you connect a lamp to a motor output (see tip under Lamp output), you can turn it on or off.

 Finally, you can specify a Speed or Intensity between 1 and 8. 8 is the greatest speed,
brightness, or magnetic field strength; 1 the least. In the case of stopping or switching off, you
naturally do not need to specify a speed.

Here are listed some action symbols and images.

Motor right (cw) Motor left (ccw) Stop motor

Lamp on Lamp off

8.1.7 Encoder Motor (Level 1)

The program element Encoder Motor is available from Level 1 on and
allows comfortable control of motors with a built-in pulse generator or
encoder.

Tip: Sometimes even a motor is only operated in one direction, e.g. for a conveyor belt. In this

case you can use a lamp output for the motor, so as to use one connection less.

GB
ROBOPro

79

With this element you can either move a single motor
a preset number of pulses or move two motors simul-
taneously, with or without specifying a distance. If you
click on the element your left mouse button, the
property window will be displayed:

 Under Action you select whether you would like
to move one motor a specified distance (Dis-
tance), two motors with the same speed
(Synchron) or two motors a specified distance
with the same speed (Synchron Distance). To
cancel any of these actions and to stop the mo-
tor, select the action Stop.

 Under Motor output 1/2 you select the motor
outputs which the action will affect. Depending
on the action you can select one or two motors.

 Under Interface / Extension you can select
whether you would like to use an output of the
master or an output of an extension module. If the action controls two motors, both motor
outputs must be of the same Interface. You will find more information in Chapter 7 -
Controlling several Interfaces

 Under Direction 1/2 you set the direction in which the motors will move.

 Under Speed you enter the speed of the motors. If two motors are controlled, the speed of
both motors is the same.

 Finally, under Distance you can enter the number of encoder pulses you would like the
motor(s) to move.

You will find more information on using this element in Section 12.6.1 - Encoder Motor (Level 1)
on page 136.

8.1.8 Lamp output (Level 2)

With the Lamp output program element you can switch one of the
single-pole outputs O1-O8 of the ROBO TX Controller. The outputs
can be used either in pairs as motor outputs (see above) or individual-
ly as lamp outputs O1-O8. Unlike motor output, lamp outputs only take
up one connection pin. That way you can control 8 lamps or solenoid

valves separately. You connect the other lamp contact with the one of the ground sockets of the
ROBO TX Controller (┴).

Tip: If you only wish to connect four lamps or motors, you can also use motor outputs for
lamps. This is more practical, because in this way you can connect both lamp connections
directly to the Interface output, rather than having to connect all the negative terminals sepa-
rately to one of the ground sockets.

GB
ROBOPro

80

If you right-click on the element, the Properties window is
displayed:

 Under Lamp output you can set which of the four
motor outputs O1 to O8 should be used.

 Under Interface / Extension you can select whether
you want to use an output of the Interface or an out-
put of an extension module or of another Interface.
You will learn more about this in Chapter 7 - Control-
ling several Interfaces

 Under Image you can select an image to represent
the fischertechnik component connected to the out-
put.

 Under Action you set how the output is to be affect-
ed. You can switch a lamp on or off.

 Finally, you can also specify an Intensity between 1 and 8. 8 is the greatest brightness; 1 the
least. In the case of switching off, you naturally do not need to specify an intensity.

Here are listed the symbols for the various actions for the Lamp image.

Lamp on Lamp off

8.1.9 Wait for input

The Wait for Input element
waits until one of the Inter-
face’s inputs is in a
particular state or until it
changes in a particular way.

If you right-click on the element, the Properties window
is displayed:

 Under Wait for you can select the type of change
or the state to be waited for. If you select 1 or 0,
the element waits until the input is closed (1) or
open (0). If you choose 0 -> 1 or 1 -> 0, the ele-
ment waits until the state of the input changes
from open to closed (0->1) or from closed to open
(1->0). In the last case, the element waits until the
state of the input changes, regardless of whether
it’s from open to closed or vice versa. To help you understand this further, it is explained in
Section 3.6 - Other program elements how you can emulate this element with the Branch
element.

GB
ROBOPro

81

 Under Digital input you may enter which one of the inputs is to be queried. You can select
one of the universal inputs I1-I8. The other inputs are described in Section 8.3.1 - Digital
Branch

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find out more about this
in Chapter 7 - Controlling several Interfaces

 Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

8.1.10 Pulse counter

Many fischertechnik model
robots also use pulse wheels.
These gear wheels operate a
sensor four times for every
revolution. With these pulse

wheels you can turn a motor on for a precisely defined

number of revolutions rather than for a given time. To do
this, you need to count the number of pulses at

an input of the Interface. For this purpose
there is the Pulse counter element, which

waits for a user-definable number of pulses.

If you right-click on the element, the Properties window is
displayed:

 Under Pulse type you can select the type of pulse to be counted. If you choose 0 -> 1 (rising),
the element waits until the state of the input has changed from open to closed (0->1) the
number of times you have specified under Number of pulses. If you choose 1 -> 0 (falling),
the element waits until the state of the input changes from closed to open (1->0) the specified
number of times. With pulse wheels, however, the third possibility is used more often. Here
the element counts both 0 -> 1 and 1 -> 0 changes, so that 8 pulses are counted per revolu-
tion of a pulse wheel.

 Under Digital input you may enter which one of the inputs is to be queried. You can select
one of the universal inputs I1-I8. C1D-C4D selects one of the counter inputs. However, this
does not make use of a fast hardware counter. Nevertheless, the maximum count frequency
is several 100 Hz.

Note: There is a spezial element to control encoder
motors which slows down the motors in time and
therefore works more precisely. See section 8.1.7 -

En coder Motor (Level 1) on page 78.

GB
ROBOPro

82

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Controlling several Interfaces

 Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

8.1.11 Counter loop

With the Counter loop element you can very easily have a part of the
program executed several times. The Counter loop element has a built-
in counter. If the counter loop is entered via the =1 entry, the counter is
set to 1. If the counter loop is entered via the +1 entry, 1 is added to the
counter. According to whether the counter is greater than a value you
have prescribed, the counter loop branches to the Yes (Y) or No (N)
exit. You will find an example for this in Section 3.6.4 - Counter loop.

If you right-click on the element, the Properties window is displayed:

 Under Number of iterations you enter the number of times the
counter loop is to be exited via the No (N) exit before the Yes
(Y) exit is activated. The value you enter should be positive.

 If you click on Interchange Y/N connections, the Y and N
connections will be changed over as soon as you close the win-
dow with OK. According to where the Y and N connections are,
the program section to be repeated will be to the right of or un-
der the counter loop.

8.1.12 Sound

You can use the Sound element to play sounds that are saved as .wav
files on the ROBOTICS TXT Controller. Right-click on the element with
your mouse to view the properties window:

 You can select from the available sounds
under Sound. You can listen to samples
of the sounds using the touch display
menu under Test – Sound.

 If the box next to Wait until sound is
finished is selected, the program will wait
until the sound has finished playing before
continuing.

 For the repeat count you can specify the
number of times the sound will be played in a row. Enter 0 if you want it to play in an infinite
loop.

GB
ROBOPro

83

8.2 Send, Receive (Level 2-4)

In this element group, you find program items which you can use for sending and receiving mes-
sages over the ROBO RF DATA Link or over the serial interface of the ROBO interface.

8.2.1 Sender (Level2)

With the transmitter you can send a command or, fairly generally, a
message, via Bluetooth (in case of the ROBO Interface via the ROBO
RF Data Link) to another interface. In this way, for example, several
robots can communicate with one another.

Properties window for the transmitter element

 Under Send command, you can enter the command and
starting from level 3 the Command value. A command
consists of a name and a numerical value. The numerical
value can also be determined over a Data input. With
command names, which are not selected from the list, on-
ly the first 3 letters or numbers are considered. You can
indicate more than three characters, but “Hello“,
“Help” and “helicopter” stand all for the same message,
because all begin with ‚Hel'. Large and lower case and
special characters (blank!? , % and the like) are likewise
not differentiated. XY! And XY? stand also for the same
message. Numbers are however differentiated, so that
XY1 and XY2 are different messages.

 Under Destination interface/element, you can select to
which interface or program element must be sent the
command. In most cases, you will send an command to
an interface with a certain radio call number or to all interfaces. Starting from level 4, there
is additionally the possibility to use a group between 10 and 255 as receiver address. Com-
mands to a group are not sent to a certain interface with a certain radio call number, but to
receiver elements in which the same group number is indicated. Thus you can, for example,
differentiate from whom a message was sent, by using another group for each transmitter.
The group numbers begin with 10, because the numbers 0 to 9 are reserved. Your learn
more about the reserved group numbers with the Receiver element.

 Under transmit channel, you adjust how the message should be transmitted purely techni-
cally. In the level 2, this selection is not available and it is always transmitted by RF (not
including self). By RF means that the message is sent via Bluetooth (ROBO RF Data Link). If
RF (including self) is selected, the message is also sent to the interface which has sent the
message. In order that it functions, under Destination interface/element a destination must be
selected which includes the sending interface, consequently, for example, to all interfaces or
to a group of receivers. You can also send a message only to the sending interface itself. You
can use this function, for example, for communication between different processes.
Starting from level 4, the ROBO Interface also supports sending commands over the serial
COM interface of the ROBO interface. For this purpose, you must connect two interfaces
with a serial null-modem cable.

GB
ROBOPro

84

 Under optimization (starting from level 4) you can adjust whether identical commands
should be sent several times. With many commands, it does not make a difference whether
you send the command once or several times after one another. Without optimization, for ex-
ample, commands sent several times after one another fill the transmission buffer of RF Data
Link, so that other commands cannot be sent so quickly. Therefore it is reasonable to delete
identical commands. As a rule, you will be willing to delete an command if only it is identical
to the last buffered command. If you send in this mode, for example, 2x Start and then 2x
Stop, only 1x Start and then 1x Stop is transmitted. If you however send Start, Stop, Start
and Stop fast after one another, consequently not two times the same command after one
another, the commands are transmitted unchanged. However, you can also indicate that
commands should to be deleted if they are identical to any buffered command. On the
contrary, with many commands the optimization is not reasonable and the normal mode
should be used. An example for that is the Add command, with which you can add elements
to a list. With a list, it finally makes a difference whether an element 1x or 2x is added. In the
level 2, the option delete if identical to the last buffered command is always selected.

 Under Data type you can select whether the value of the sent command is a whole number
or a floating point number. Also see Chapter 13 - Working with decimals on page 140.

8.2.2 Receiver (Branch when command is received, Level 2)

This element is the counterpart to the preceding transmitter element.
Depending on whether a certain command was received or not, the
element is branched to the J or to the N output.

GB
ROBOPro

85

Properties window for the Receiver element

 Under Receive command, you enter the command which
the receiver should receive. As already explained with the
transmitter, only the first 3 letters or numbers of the name
are considered. Then you must still select whether the re-
ceiver only reacts to commands which were sent directly
to the interface, consequently with a certain radio call
number, or to commands which were sent to all interfaces.
You can also select both. As already described with the
transmitter, starting from the level 4, you can send mes-
sages also to a certain group. Such messages are
received by all receiver elements with which this group
was indicated. The groups 10 to 255 can be used arbi-
trarily. The groups 0 to 8 correspond to the radio call
numbers 0 to 8. The group 9 is reserved for sending to all
interfaces. When sending messages, it does not make a
difference whether you send to the group 1 or to the radio
call number 1. But for receiving you cannot indicate a ra-
dio call number, because each interface knows its own
radio call number. By indicating a group of receivers from
1 to 8 for the receiver, you can however receive messag-
es, which were actually meant for another interface. But
groups of receivers smaller than 10 you can only use starting from level 5.

 Under Serial COM port (starting from level 4, only ROBO Interface), you can indicate that the
element can receive also messages from the COM interface. Here it is a matter of a glob- al
adjustment whether the COM interface should be activated or not. When in a program one
single transmitter or receiver uses the COM interface, all receiver elements can receive mes-
sages from the COM interface.

 Under Type of buffer you can specify whether the memory area in which received com-
mands are stored is local or global. If you select global, the element can also receive
commands when the subprogram in which the element lies is not active.

 Under swap Y/N branches, you can interchange the position of the Y and N outputs of the
branching. Normally, (Y) is the Yes output down and the No (N) output on the right. Often it is
however more practically if the Yes output is on the right. Press the swap Y/N branches, then
the Y and N connections are exchanged, as soon as you close the window with OK.

8.2.3 Receiver (Level 3)

The receiver element described in the previous section is mainly meant for
the level 2, since it can only receive commands, but no command values.
The level 3 receiver element receives, on the contrary, arbitrary commands
with command value. You do not indicate with this element any command

which the receiver element should receive. The element sends fairly easily all the received com-
mands to the elements connected to the output.

GB
ROBOPro

86

Properties window for the Transmitter element

 Under Receive command, you indicate whether the receiver
only reacts to commands which were sent directly to the inter-
face, consequently with a certain radio call number, or to
commands which were sent to all interfaces. Starting from the
level 4, you can also select a certain group. You learn more
about groups of receivers in the two previous sections 8.2.1 -
Sender (Level2) and 8.2.2 - Receiver (Branch when command
is receiv Level 2). As with the level 2 Transmitter, with the
level 3 transmitter, you can select only one option. You can however connect the outputs of
two or several receiver elements with different selection, if you want to receive commands
with different destination Data. In particular, you can also switch so receivers with different
groups.

 Under Serial COM port (starting from level 4), you can indicate that the element can also
receive messages from the COM interface. See thereto the previous section 8.2.2 -
Receiver (Branch when command is received, Level 2).

8.2.4 Wait for command (Level 4)

The Wait for Command element is used similarly as the Receiver
(Branch when command is received, Level 2), for waiting a com-
mand. However, it does not wait for commands which are sent by
ROBO RF Data Link or other interfaces, but for commands which are
sent to the command input on the left side of the element. If you
connect a Receiver (Level 3) element there, a level 2 receiver results.
However, this element has additionally a Data output on the

right side. Always when an command has been received and so the program flux is led to the J
output, the numerical value sent with the command is available at the command value output W.
Since the W and J output belong together, you cannot exchange the J and N outputs for this
element. You will find an example in Section 6.1 - on page 66.

Properties window for the “Wait for command" element

 Under Command, you select the command for which the
element should wait. You can also enter an own command,
whereat however only first 3 letters or numbers are considered.
See for that the description under Send command in the Sec-
tion 8.2.1 - Sender (Level2) on page 83.

 The buffer size of the command buffer is only indicated start-
ing from level 5. As the level 2 receiver, this element notes how
many commands have been received. Since waiting at the
command element must also note the command value for each command, the maximum
number of commands is here however limited. For usual applications, the standard value of 4
commands should be completely sufficient, since a program command received is mostly, as
much as possible, processed immediately.

GB
ROBOPro

87

8.2.5 Command Filter (Level 4)

With the command filter, you can, so to say, re-label commands. When a
certain command is sent to the left outlet, the element sends another com-
mand to the elements which are connected to the right output, but with the
same command value as the command received at the output. Thus you can

make, for example, a motor command from one = command, such as Right or Left. You may find
an example in the Section 6.2 on page 67.

Properties window for the Command filter element

In the Command filter element you select two commands: the
command which is expected at the input and the command con-
verted into this command and sent to the output. You can also
enter your own command, whereby however only the first 3 letters
or numbers are considered. See thereto the description under Send
command in the Section 8.2.1 - Sender (Level2) on page 83. Under
Data type you can select whether the value of the com- mand (sent
or received) is a whole number or a floating point number. Also see
Chapter 13 - Working with decimals on page 140.

8.2.6 Exchange Message (Level 4)

Similar to the way the command filter exchanges the name of a command
(see previous section), this element exchanges the value. In conjunction with
the command filter this allows you to take one message and generate several
different messages with different values. For example, if you would like to
program a control for a track vehicle so it will understand commands like “left”,

“right” or “forward”, you can convert the command “left“ into a “=” command to the motor element
using the command filter. In addition, with this element you can replace the value of the “=” com-
mand by 0 or the negative value and send it to the other motor. The command whose value is to
be exchanged is sent to the B input. You place the new value in the W input.

Property window for the Exchange message element

 Under Input variable life time you can select whether the W
input stores the value in a local or global variable.

 Under Data type you can select whether the value of the
command (sent or received) is a whole number or a floating
point number. Also see Chapter 13 - Working with decimals on
page 140.

8.2.7 I
2
C Write (Level 4)

This element sends commands or data to the TX controller I2C inter-
face. The I2C interface is available at the EXT2 port. The standard I2C
interface can also be used to connect sensors and actuators from
other manufacturers (not fischertechnik) to the TX controller. Use of the
I2C interface requires experience with use of electronic components
and corresponding measuring instruments.

GB
ROBOPro

88

Subroutines for various, frequently used I2C modules are available in the element window under
Library / I2C. You can open the library files directly as ROBO Pro programs. The main l ibrary
program contains a test routine for the module in question. The library files are present in
the ROBO Pro installation directory under Library / I2C.

The I2C Write element sends an address byte with 1 to 4 data bytes over the I2C interface. First
the 7-bit device address is sent and then the write bit. Then a 0-2 byte long sub-address and finally
1 or 2 data bytes are sent. From the vantage point of the I2C protocol, there is no difference be-
tween the sub-address and data. However many I2C modules require that, following the device
address, a sub-address be sent first before sending the data. The precise protocol is given in the
data sheet for the I2C module.

Properties Window for I
2
C Write Element

 For the Device address enter the 7-bit device ad-
dress (without R/W bit). The address is specified as
an 8bit address (with R/W bit) for some devices. In
such cases it is necessary to divide the address by 2;
for example 0x60 instead of 0xC0.
The device addresses 0x50..0x57 (=0xA0…0xAF as
8-bit) are used internally by the TX controller and
cannot be used for external modules.

 Under Sub address you can enter an 8 or 16-bit sub-
address. See also Sub address size below.

 Under Data input you can select whether the data is
fixed and specified further down under Data value or
if the element is to use a data input.

 Under Data value you can enter the data value to be sent, when a data input is not used.

 Under Sub address size you can select whether a sub-address is to be used. Not all I2C
modules use sub-addresses so that it is also possible to enter none under Sub address size.
If you use a 16-bit sub-address, you can select whether the MSB (=Most Significant Byte) or
LSB (=Least Significant Byte) is to be transferred first.

 Under Data size you can select whether the element sends 8 or 16 bit data to the I2C module.
With 16-bit data, you can select whether the MSB or LSB is to be transferred first, as with
sub-addresses.

 Under Speed you can select the I2C clock speed. This can be 100kHz or 400kHz. When all
connected I2C modules support 400kHz, you should use 400kHz, otherwise 100kHz.

 Under Error handling you can select what happens when the connected I2C modules cannot
process the data properly. You can select between Repeat until successful, Repeat 10
times or abort immediately. In the case of the last two options, the element at the bottom
right is provided with an additional error output.

 When keep open is checked, the element does not send a stop over the I2C bus at the end.
This allows further data to be written or read with an additional I2C write or I2C read element.
If read and write operations are not accomplished alternately or a read command with sub-
address executed, the device address of the following I2C elements is not sent again. A re-
start is accomplished on the I2C bus to change over between read and write operations; not a
stop/start sequence. The I2C bus remains reserved for the current process, until an I2C ele-

GB
ROBOPro

89

ment performs the current process without the option "keep open". Other processes are disa-
bled, if they use the I2C element.

8.2.8 I
2
C Read (Level 4)

This element reads the data from the TX controller I2C interface. The
comments regarding the I2C write element also apply for this element

When a sub-address is used, the I2C Read element first sends an
address byte in the write mode and then the 1 or 2 byte long sub-

address. The element then performs a restart on the I2C bus, sends the device address again, this
time in the read mode, and then reads the 1-2 data bytes. If a sub-address is not used, the ad-
dress byte is sent immediately in the read mode and the data then read.

Properties Window for I
2
C Read Element

 For the Device address enter the 7-bit device ad-
dress (without R/W bit). The address is specified as
an 8-bit address (with R/W bit) for some devices. In
such cases it is necessary to divide the address by 2;
for example 0x60 instead of 0xC0.
The device addresses 0x50..0x57 (=0xA0…0xAF as
8-bit) are used internally by the TX controller and
cannot be used for external modules.

 Under Sub address you can enter an 8 or 16-bit sub-
address. See also Sub address size below.

 Under Sub address size you can select whether a
sub-address is to be used. Not all I2C modules use sub-addresses so that it is also possible
to enter none under Sub address size. If you use a 16-bit sub-address, you can select
whether the MSB (=Most Significant Byte) or LSB (=Least Significant Byte) is to be trans-
ferred first.

 Under Data size you can select whether the element reads 8 or 16 bit data from the I2C
module. With 16-bit data, you can select whether the MSB or LSB is to be read first, as with
sub-addresses.

 Under Speed you can select the I2C clock speed. This can be100kHz or 400kHz. When all
connected I2C modules support 400kHz, you should use 400kHz, otherwise 100kHz.

 Under Error handling you can select what happens when the connected I2C modules cannot
process the data properly. You can select between Repeat until successful, Repeat 10
times and abort immediately. In the case of the last two options, the element at the bottom
right is provided with an additional error output.

 The option Keep open has the same effect as with the I2C Write element

8.3 Subprogram I/O (Level 2-3)

In this element group you will find program elements that you only need for subprograms.

GB
ROBOPro

90

8.3.1 Subprogram entry (Level 2)

A subprogram can have one or more Subprogram entries. The main program or
the higher-level subprogram passes control to the subprogram via these entries.
In the subprogram’s green symbol that is inserted into the higher-level program,
one connecting pin for each Subprogram entry is inserted on the upper side. The

connections on the symbol have the same sequence (left to right) as the Subprogram entries in the
subprogram’s functional plan. If you right-click on the element the Properties window is displayed.
There you can give the entry a name, which will then be displayed in the symbol. You can find out
more about subprograms in Chapter 4 - Level 2: Working with subprograms on page 28.

8.3.2 Subprogram exit (Level 2)

A subprogram can have one or more Subprogram exits. The subprogram passes
the control back to the main program or higher-level subprogram via these exits.
In the subprogram’s green symbol that is inserted into the higher-level program,
one connecting pin for each Subprogram exit is inserted on the lower side. The

connections on the symbol have the same sequence (left to right) as the Subprogram exits in the
subprogram’s functional plan. If you right-click on the element the Properties window is displayed.
There you can give the exit a name, which will then be displayed in the symbol. You can find out
more about subprograms in Chapter 4 - Level 2: Working with subprograms on page 28.

8.3.3 Subprogram command input (Level 3)

Via this element, subprograms can be linked to input elements such as switch-
es in the main program or higher-level subprogram, or supplied from there with
values from variable elements, e.g. co-ordinates. In the subprogram’s green
symbol that is inserted into the higher-level program, one connecting pin for

each Subprogram command input is inserted on the left side. The connections on the symbol have
the same sequence (top to bottom) as the Subprogram command inputs in the
subprogram’s functional plan. There is a thorough explanation of the use of this element in Section
5.5 - Command inputs for subprograms

Property window

 Under Name you can enter the name for the
command input. Only the first two characters are
displayed in the green subprogram symbol.

 Under Data type you can select whether the
value of the received command is a whole num-
ber or a floating point number. Also see Chapter
13 - Working with decimals on page 140.

 Under Passing mechanism (Level 4 and above)
you can select whether the input accepts only “=”
commands or arbitrary commands. If variables
or Interface inputs are connected to the input
in the subprogram call, you should select only “=” commands. In this case the subprogram
input stores the lastly transmitted value, making the correct value available immediately when
the subprogram is started. If you select arbitrary commands, you can also send com-
mands like stop or own commands to the input. These commands will only be forwarded to

GB
ROBOPro

91

the subprogram if the subprogram is active. This makes sense when the subprogram con-
tains a motor element, for example, and you would like to send commands to this element
from outside. You will find more information in section 6.3 Sending arbitrary commands to
subprograms on page 68.

8.3.4 Subprogram command output (Level 3)

Via this element commands such as left, right, stop can be sent to motors or
other output elements in the main program or in the higher-level subprogram.
In the subprogram’s green symbol that is inserted into the higher-level pro-
gram, one connecting pin for each Subprogram command input is inserted on

the right side. The connections on the symbol have the same sequence (top to bottom) as the
Subprogram command inputs in the subprogram’s functional plan. There is a thorough explanation
of the use of this element in Section 5.5 - Command inputs for subprograms

Property window

 Under Name you can enter the name for the command output.
Only the first two characters are displayed in the green subpro-
gram symbol.

 Under Data type you can select whether the value of the sent
command is a whole number or a floating point number. Also
see Chapter 12 - Working with decimals on page 140.

8.4 Variable, List, ... (Level 3)

Program elements in this group can store one or more numerical values. They allow you to devel-
op programs with a memory.

8.4.1 Variable (global)

A variable can store an individual numerical value between -32767 and
32767. The value of the variable is set by connecting an = Command ele-
ment to the command input on the left-hand side (see Section 8.5.1 =
(Assignment) on page 97). Via the Properties window, one can also give the

variable an initial value, which the variable will retain until it receives the first command altering the
value.

ROBO Pro creates only one variable for all variable elements with the same name and Variable
type = Global. All global variables with the same name are identical and always have the same
value, even if they occur in different subprograms. When one of these variable elements is altered
via a command, all other variables with the same name are changed too. There are also local
variables (see next section) to which this doesn’t apply.

As well as the = command, a variable also understands + and – commands. So, for example, if a
variable receives the command + 5, it adds the value 5 to its current value. In the case of the –
command, the value communicated with the command is subtracted from the variable’s current
value.

Caution:
If in a +or – command the value of a variable goes outside the allowable range of values, 65536 is

GB
ROBOPro

92

added to or subtracted from the value of the variable to bring it back in the valid range. As this
behavior is normally unwelcome, you should make sure that this does not happen.

Every time the value of the variable changes, it sends an = command with the new value to all
elements connected to the command output of the variable. If you want to monitor the value of a
variable, you can connect a panel display to the output of the variable (see section 8.7.6 Panel
input on page 107).

Here is a compendium of all the commands that the Variable element can process.

Command Value Action

= -32767 to
32767

Sets the value of the variable to the value passed with the com-
mand.

+ -32767 to
32767

Adds the value passed with the command to the current value of
the variable.

- -32767 to
32767

Subtracts the value passed with the command from the current
value of the variable.

Incidentally, the odd value range of -32767 to 32767 results from computers calculating in the
binary system, and not in the decimal system as we do. In the binary system 32767 is a round
number, a bit like 9999 in the decimal system. But we don’t need to worry about this, as the com-
puter converts all the numbers from the binary to the decimal system. We only notice anything in
the maximum values and when there is an overflow in calculations.

Properties window for variables.

 Under Name you can enter a name for the variable.

 Under Initial value you can enter an initial value for the
variable. The variable retains this value until it gets a new
value via an =, +, or – command.

 Under Data type you can select whether the value of the
variable is a whole number or a floating point number. Also
see Chapter 13 - Working with decimals on page 140.

 The Life time item is only significant for variables in sub-
programs, and is more precisely explained in the following
section, “Local variables”. In the case of variables in the
main program, both settings have the same effect.

8.4.2 Local variables

All global variable elements with the same name use one and the same
variable and always have the same value. That is presumably what you
expect and what is generally practical. But if you use variables in subpro-
grams, that can lead to big problems. If your program has more than one

parallel process, multiple instances of a subprogram can be being executed at a time. In this kind
of situation, it usually leads to chaos if the program uses the same variables in all processes. For
this reason there are local variables. A local variable behaves almost exactly like a global variable,
with one difference: the local variable is only valid in the subprogram in which it is defined. Even if
two local variables in separate subprograms have the same name, they are distinct, independent

GB
ROBOPro

93

variables. Even if one program is being executed in parallel by several processes, the subprogram
in each process has an independent set of local variables. Local variables exist only as long as the
subprogram in which they are defined is being executed. Therefore local variables are not as-
signed their initial values at program start, but rather every time the relevant subprogram is started.
As a subprogram is supposed to do the same thing every time if it is called more than once, it is
much more practical if the variables are set to their initial values at each call. Local variables have,
so to speak, no memory of previous calls of the same subprogram.

In the main program, local and global variables behave in the same way, as the overall program
and the main program are started at the same time. However, local variable are somewhat more
efficient in program execution. On the other hand, list elements should rather be defined globally,
because the storage area for global variables is bigger than for local variables.

8.4.3 Constant

Like a variable, a constant has a value, but this value
cannot be altered by the program. You can link a
constant with a data input of a subprogram symbol, if

the subprogram is to use the same value at all times. Constants are
also very practical for calculations with operators. You will find an
example of this at the end of Section 5.7 - Operators.

Property window for constant

 Under Data type you can select whether the value of the
constant is a whole number or a floating point number. Also see Chapter 13 Working with
decimals on page 140.

 Under “Value” you enter the value of the constant required.

8.4.4 Timer variable

A timer variable behaves essentially just like a variable. Even the distinction
between normal and static variables exists with timer variables. The only
difference is that a timer variable counts down the stored value at fixed time
intervals until it reaches 0. Once the timer value reaches zero, it stays there.

If the timer value becomes negative, e.g. through a minus command, the value returns to 0 at the
next time step.

The rate at which a timer variable counts down can be set between 1/1000 second per step and 1
minute per step in the Properties window. In doing so, you should observe that the accuracy of the
timer depends on the time steps set. If, for example you set a time on 1 x 10 seconds, the next
time step can take place a short time later (e.g. as soon as one second), or not until 10 seconds
later. So timers are only as precise as the time steps set. Therefore, you should prefer to select
small time steps, for example 10 x 1 second or 100 x 0.1 seconds rather than 1 x 10 seconds. You
should only select a time step of a minute if the program is to wait at least an hour. Then, one
minute more or less is not going to make much difference.

The number of steps to be counted down is generally assigned to the
timer via an = command from a command element. In the example
illustrated, 100 steps of 10ms each are counted down. This
corresponds to a duration of 1000ms=1 second. The precision of

GB
ROBOPro

94

this is 10ms.

Timer variables enable you to solve even difficult time measurement and delay problems easily.
For example, if a robot is to discontinue a search after 20 seconds, you can set a timer variable on
20 x 1 seconds (or 200 x 0.1s) at the beginning of the search, and then query regularly in the
search program whether the timer value is still greater than 0. You can also reset the timer to its
starting value where there is partial success in the search.

If you want to measure a time, the timer variable should initially be set to the biggest possible
positive value (30000 or 32767), so that there is a lot of time left before the timer value reaches 0.
If you want to know how much time has passed since then, you subtract the current timer value
from the initial value.

Properties window for timer variables

 Under Delay you can determine an initial value for the timer
variable. As a rule, you will enter 0 here, and set the value of
the timer variable with an = command at the appropriate time.
But if the timer is supposed to start running at the start of the
program or of a subprogram, the corresponding value can be
entered here.

 Under Time unit you can select the size of the time steps at
which the timer variable will be counted down.

 Under Timer variable type you can set whether the timer is a
global or a local variable (see Section 8.4.2 - Local variables
on page 92).

8.4.5 List

The List element corresponds to a variable in which one may store not just
one but several values. The maximum number of values that can be stored in
a variable is determined in the Properties window.

You can append values to the end of the list or remove values at the end of
the list. You can also change or read any value in the list or exchange any

value in the list with the first value in the list. A value cannot be inserted in the middle or the begin-
ning of the list directly. But you can write an appropriate subprogram that will perform these
functions.

The following functions of a list are used by sending commands to the W (for write) input. The
following commands can be sent to the W input:

Command Value Action

Append

-32767
to
32767

Appends the value passed with the command to the end of the list. The
list gets bigger by one element. If the list already is at its maximum size,
the command is ignored.

Delete 0 to
32767

Deletes the given number of elements from the end of the list. The value
communicated with the command is the number of elements to be
deleted. If the number is greater than the number of elements in the list,

GB
ROBOPro

95

 all elements are deleted. If the number is 0 or negative, the command is
ignored.

Exchange

0 to
32767

Exchanges the given element with the first element in the list. The value
passed with the command is the position number of the element to be
exchanged.

Via the I (for Index) input, a specific element of the list can be selected. To do this, you send an =
command to the I input with the desired element number. The first element is element number 0.
Another value can be assigned to the element selected via the I input by sending an = command
with the desired value to the W input.

The element selected via the I input can be queried via the R (readout) output. If the I input, or the
value of the entry selected by the I input, changes, the list sends the current value of the selected
entry to those elements connected to the R output.

Via the I output you can query whether the index defined at the I input is valid. If N is the number of
elements, a value between 0 and N-1 must be present at the I input. If this is the case, the I output
sends an = command with the value N, in any other case with value 0, to all connected elements.

Properties window for lists

 Under Name you can enter a name for
the list.

 Under Maximum size you can enter
the maximum number of elements on
the list. This size cannot be exceeded
by Append commands.

 Under Initial size you enter the number
of elements with which the list is to be
initialized at start time.

 Under List of initial values you can
enter the initial values to be pre-
assigned to the list. With the buttons to
the right of the list you can edit the list.

 Under Load from .CSV file you can
select an Excel-compatible .CSV file
from which the list should take its val-
ues. In the selection field in the middle
you can choose the column of the .CSV
file to be used for this purpose. The file
is loaded straight away and displayed under List of initial values. When you start the pro-
gram or perform a download, ROBO Pro will try once more to load the current values from
the file. If this is not successful, the values stored under List of initial values are used.

 Under Save to .CSV file you can specify a file to which the contents of the list should be
saved after the program ends. This works, however, only in online mode and only for static
lists (see next point). The contents of the list are written in the selected column of the file.
Under Column separator you can select whether the individual columns in the list should be
separated with commas or semicolons. In countries where 0.5 is written with a period, a

GB
ROBOPro

96

comma should normally be used as the column separator. As people write 0,5 with a comma
in Germany, in Germany a semicolon is also often used as a column separator. If you have
problems importing a ROBO Pro CSV file into, for example, Microsoft Excel, try a different
column separator.

 Under List data type you can select whether the list contains whole numbers or floating point
numbers. Also see Chapter 13 Working with decimals on page 140.

 Under List data life time you can set whether the list elements are global or local variables
(see Section 8.4.2 - Local variables on page 92). For large lists (with a maximum size over
100 elements) type Global is to be recommended, because more memory is available for
global variables than for local variables.

8.5 Commands (Level 3)

All program elements in this group are command elements. Depending on
the application they may also referred to as message elements. When the
command element is executed (i.e. when the flow of control passes into the
blue entry at the top of the element), the command element sends a com-
mand or a message to the element connected to the output on its right.
There are various commands like right, left or stop, which have different effects on the connected
element. As a rule, the connected elements understand only a few commands. The commands
each program element understands and the effects of these commands are listed alongside the
various program elements. Most commands are also accompanied by a value. With a right com-
mand for example, one specifies also a speed between 1 and 8. A stop command, on the other
hand, has no additional value.

Properties window for command elements

 Under Command you can select the desired command
from a list of all possible commands.

 Under Value you enter the numerical value that should be
passed with the command. If no value is to be passed,
this field remains empty.

 Under Value description you can enter a short indicative
text (e.g. X= or T=), which will be displayed in the com-
mand element with the value. The text should make clear
what sort of value is involved. But this serves only as a
comment, and has no other function.

 Under Data type you can select whether the value of the command is a whole number or a
floating point number. Also see Chapter 13 - Working with decimals on page 140.

 Under Data input for command value you can specify whether the command element is to
have an orange data input on its left for the value to be passed. With all command elements,
the value can either be entered directly in the command element or read in through a data in-
put on the left side of the command element. In this way a motor, for example, can be
controlled in a servo loop with a variable speed.

GB
ROBOPro

97

8.5.1 = (Assignment)

The = command assigns a value to the receiver. As a rule, it is used to
assign a value to variables, timer variables, list elements or panel outputs.

But the = command is sent not only by command elements, but by all pro-
gram elements with data outputs. All elements send = commands when the

value of an output is altered. A Digital input element, for example, sends an =1 command when a
sensor on the input is closed and an =0 command when the sensor is opened. But no command
element is used to do this. Program elements with data outputs have, so to speak, = command
elements built in.

All ROBO Pro program element data inputs can process at least the = command. This makes the =
command the most frequently used command in ROBO Pro.

8.5.2 + (Plus)

The + command is send to a variable or a timer variable to increase the value
of the variable. Any desired value can be passed with the + command, and
will be added to the variable. As the value passed with the command can
also be negative, the value of the variable can also be decreased by this
command. See Section 8.4.1 - Variable on page 91 and Section 8.4.4 –
Timer variable on page 93.

8.5.3 – (Minus)

The – command is used similarly to the +command described above.
The only difference is that value passed with the command is subtracted
from the value of the variable.

8.5.4 Right

The Right command is sent to motor output elements to switch on the ele-
ment with clockwise rotation. See Section 8.7.4 - Motor output on page 105.

The value is a speed from 1 to 8.

8.5.5 Left

The Left command is sent to motor output elements to switch the motor on in
a counterclockwise direction. See Section 8.7.4 - Motor output on page 105.

The value is a speed from 1 to 8.

8.5.6 Stop

The Stop command is sent to a motor output element to stop the motor. See
Section 8.7.4 - Motor output on page 105.

No value is passed with the Stop command.

GB
ROBOPro

98

8.5.7 On

The On command is sent to a lamp output element to switch the lamp on.
See Section 8.7.5 - Lamp output on page 106. An On command can also be
sent to a motor output element; it corresponds to the Right command. For
motors, however, it is better to use the Right command, as the direction of
rotation is then directly recognizable.

The value is the brightness or intensity, from 1 to 8.

8.5.8 Off

The Off command is sent to a lamp output element to switch the lamp off.
See Section 8.7.5 - Lamp output on page 106. An Off command can also be
sent to a motor output element; it corresponds to the Stop command.

No value is passed with the Off command.

8.5.9 Text

The Text command is a special command in that it doesn’t send a
command with a number, but rather a text of your choice, to the con-
nected element. However, there is only one program element that can
process the Text command, and that is a text display in a panel. You will
find further information in Section 9.1.2 - Text display on page 121.

8.5.10 Append value

The Append command is a special command for list elements. See Section
8.4.5 - List on page 94. The command is accompanied by a value, which is
appended to the end of the list. If the list is already full, the command is
ignored.

8.5.11 Delete value(s)

The Delete command is a special command for list elements. See Section
8.4.5 - List on page 94. With this command, any number of elements can be
deleted from the end of the list. The desired number is passed with the
command as a value. If the value passed is greater than the number of
elements in the list, all the elements in the list are deleted. In order to delete

a list entirely, a Delete command with the maximum possible value of 32767 can be sent.

GB
ROBOPro

99

8.5.12 Exchange values

The Exchange command is a special command for list elements. See Sec-
tion 8.4.5 - List on page 94. With this command, any element of a list can be
exchanged with the first element. The number of the element to be ex-
changed with the first element is passed with the command as a value.
Important: the first element of a list has the number 0. If the value passed is

not a valid element number, the list element will ignore the command.

8.6 Compare, wait for, ... (Level 3)

The program elements in this group all serve for branching of program control or for delaying the
continued running of the program.

8.6.1 Branch (with data input)

This program branch has an
orange data input A on the
left of the element. Via this, a
value is read in, which often
comes from an input element
(see Sections 8.7.1 to 8.7.6
from page 102). The data

input A can also be linked to data outputs from variables,
timer variables or operators (see Section 8.8 - Operators on
page 109. The element compares the value at the data
input A with a fixed, but freely definable value. According to
whether the comparison holds or not, the element branches
to the Y or to the N exit.

Properties window for the Branch

 Under Condition in the right-hand field you enter a value which is to be compared with the
input value A. The usual comparison operators are available for the comparison.

 Under Data type you can select whether the received value is a whole number or a floating
point number. Also see Chapter 13 - Working with decimals on page 140.

 If you select Interchange Y/N connections, the Y and N exits are exchanged as soon as you
close the Properties window with OK. To return the Y/N connections to their initial positions,
you can exchange them again.

The most commonly used comparison is A>0. That means that control branches to the Y exit if the
value present at data input A is greater than 0. For example, digital inputs, which deliver a 1 or 0
value, can be evaluated in this way. But also timer variables and many other values can meaning-
fully be evaluated with the comparison A>0.

GB
ROBOPro

100

8.6.2 Comparison with fixed value

With the program element Comparison with fixed value, the value in
the data input A can be compared with a fixed, but freely definable
value. According to the value present at the data input A is greater
than, less than, or equal to the fixed value, the comparison element
branches to the right, left or middle exit. As a rule, the output of a

variable or a list is connected to the data input A. The Compare element may be replaced by two
Branch elements. In many cases, however, it makes for greater understandability if only one
element is needed.

Properties window for Compare

 Under Comparison value you can enter the constant value with which the value at input A is
to be compared.

8.6.3 Compare

With the Compare program element, the two values at the data inputs
A and B may be compared with one another. Depending on whether
A is less than B, A is greater than B, or A equals B, the
element branches to the left, right, or middle exit. The most common
application for this is the comparison of a nominal value with an actual
value. According to where the nominal value lies in relation to the
actual value, then, for example, a motor can turn left or right or be
stopped.

The Compare program element has no options to be set, and therefore no Properties window.

Note: This element does not exist for floating point numbers since floating point numbers are
prone to rounding errors. Therefore it might not be reasonable to ask whether two values are
exactly the same. You can do a two-way comparison with a program branch. See Section

8.6.1 - Branch (with data input) on page 99.

Note: This element does not exist for floating point numbers since floating point numbers are
prone to rounding errors. Therefore it might not be reasonable to ask whether two values are
exactly the same. You can do a two-way comparison with a comparative operator. See Sec-
tion 8.8.2 - Comparative operators (relational operators) on page 110 and Section 8.6.1 -

Branch (with data input) on page 99.

GB
ROBOPro

101

8.6.4 Time delay

With this element, a Time delay can be programmed into a procedure. The time
delay starts when the element has its turn to be executed. As soon as the en-
tered time delay is expired, the program continues running. See also Section
3.6.1 - Time delay on page 22.

Properties window for Time delay:

 Under Time you can enter the time delay. You can even use
decimal fractions like 1.23.

 Under Time unit you can select seconds, minutes or hours as
the unit of time. The time unit has, unlike the case for timer vari-
ables, no influence on the accuracy of the time delay. A time
delay of 60 seconds and a time delay of 1 minute behave in ex-
actly the same way.

In Expert mode (Level 5) an expanded Properties window is displayed, which is more like the
Properties window for timer variables.

8.6.5 Wait for...

The Wait for... program element holds up
program execution until a change has
taken place or a specific state has been
reached in the data input of the element.
The element comes in five varieties: The

element on the left waits until the value in the input has increased. For this purpose, not only
changes from 0 to 1, but any increase, say for example from 2 to 3, will count. The second element
waits until the value in the input has decreased, and the element in the middle waits for any
change, regardless of direction. The third element is often used for pulse wheels. The fourth and
fifth elements wait, not for a change, but for the state Yes (>0) or No (<=0) in the input. If the
relevant state is already present, the element doesn’t wait. The first three elements, on the other
hand, always wait until a change is detected in the input.

Properties window for Wait for change

 Under Type of change you can choose between the five functions
described above.

 If the button Detect changes when not active is pressed, the
element also detects changes that took place when the element was
not due to be executed. In this case, the element saves the last
known value. When the element is executed again, it continues pro-
gram execution immediately if the value has changed in the right
way in the interim. In this way, there is less probability of missing a
change, because the program just happened to be doing something
else.

GB
ROBOPro

102

8.6.6 Pulse counter

This program element waits for a definable
number of pulses at the data input on the
left side before it continues program execu-
tion. This is very practical for simple
positioning tasks with pulse wheels. For

more demanding positioning, e.g. with a variable value, subprograms with variables must be used.

Properties window for Pulse counter

 Under Number of pulses you enter the number of pulses to be
waited for before program execution is continued.

 Under Pulse type you can select between the three types of
pulses: 0-1, 1-0 or any change.

The possibility of recognizing changes when the element is not active,
as can be done with the simple Wait for ..., is not available for this
element.

8.7 Interface inputs/outputs

This group of program elements contains all input and output elements. How to use these
elements is explained in Section 4.4 - Level 3: Variables, panels & Co.

8.7.1 Universal input

The TX Controller has 8 universal inputs I1-I8 which can be used as digital
or analog inputs. You can connect buttons and any sensor from the current
fischertechnik line of products to these inputs.

GB
ROBOPro

103

Properties window for universal inputs:

 Under Universal input you may select which of the
Interface’s inputs is to be used. Extension module
inputs are selected under Interface / Extension.

 Under Sensor type you can select the sensor
connected to the input.

 Under Input mode you select whether the input is
an analog or digital input and whether it reacts to
voltage or resistance or whether it is connected to
an ultrasound distance sensor. You will learn more
in Section 11.5 - Universal inputs, sensor type and
in- put mode on page 135. ROBOPro automatically
determines the input mode depending on the con-
nected sensor. In Level 4 and above you can also
select the input mode independently. For example,
this makes sense in the case of a phototransistor.
For phototransistors ROBOPro sets the input mode
to digital 5kOhm (D 5k). This way, you can use the
phototransistor in conjunction with a lens lamp as a
light barrier that is either interrupted (= 0) or closed
(= 1). However, if you select the input mode analog 5kOhm (A 5k) for the photoresistor, you
can differentiate between many shades of light and dark.

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Controlling several Interfaces

 Under Connection you can select whether the input is always connected or only when the
subprogram containing the input is run. This only makes a difference if other global elements
such as global variables and operators are connected to the input in a subprogram.

On closer examination, there is only one type of program element for all types of inputs. You can
switch input times at any time via the tabs at the top of the Properties window. This is particularly
useful for switching between switch, IR and panel inputs.

8.7.2 Counter input

In addition to the 8 universal inputs I1-I8 the TX Controller offers 4 counter
inputs C1-C4. You can only connect digital sensors and the encoders of
encoder motors to counter inputs. For every counter input such as input C1

there are two different counter inputs such as C1C and C1D in ROBO Pro. The input C1D
behaves like a regular digital input. However, the input C1C counts the number of pulses received
by input C1. You can reset the counter by sending a reset command to the respective motor
element. The counters are used to control encoder motors and must be used for other purposes
only if no encoder motor is connected to the respective motor output (for example, M1 for C1).

GB
ROBOPro

104

Properties window for Counter inputs:

 Under Counter input you can select the desired
counter or digital input.

 Under Image you can select an image of the sensor
connected to the input.

 Under Interface / Extension you can select whether
you wish to use an input of the Interface or an input
of an extension module or of another Interface. You
will learn more about this in Chapter 7 - Controlling
several Interfaces

 Under Connection you can select whether the input
is always connected or only when the subprogram
containing the input is run. This only makes a differ-
ence if other global elements such as global
variables and operators are connected to the input
in a subprogram.

It again becomes clear on the Properties window for
counter inputs that for all inputs ROBO Pro uses a single
element, which can be switched between input types
through the tabs. For simplicity, however, separate input elements are available ready for selection
in the element window.

8.7.3 Motor position reached

These inputs are not real inputs but logical inputs to control encoder motors.
You will learn more in Section 11.6.2 - Extended Motor Control in Level 3 on
page 137.

GB
ROBOPro

105

Property window for motor inputs:

 Under Motor control input you can select which
motor you would like to query the position reached
signal for.

 Under Interface / Extension you can select whether
you wish to use an input of the Interface or an input
of an extension module or of another Interface. You
will learn more about this in Chapter 7 - Controlling
several Interfaces

 Under Connection you can select whether the input
is always connected or only when the subprogram
containing the input is run. This only makes a differ-
ence if other global elements such as global
variables and operators are connected to the input
in a subprogram.

8.7.4 Motor output

The Motor output element allows
one of the 4 two-pole motor out-
puts of a ROBO Interface or an Intelligent Interface to be controlled. A
motor output always uses two Interface connections, whereas a lamp output

only uses one connection. You can find out more about the difference between motor and lamp
outputs in Section 8.1.6 - Motor output and Section 8.1.8 - Lamp output (level 2).

A command must be sent via a command element to a motor output in order to switch the output.
A motor element can process the following commands:

Command Value Action

Right 1 to 8 The motor turns clockwise with a speed of 1 to 8

Left 1 to 8 The motor turns counterclockwise with a speed of 1 to 8

Stop none The motor stops

On 1 to 8 As for Right

Off none As for Stop

= -8 to 8 Value -1 to –8: the motor turns counterclockwise
Value 1 to 8: the motor turns clockwise
Value 0: the motor stops

In addition, a motor element can receive commands for extended motor control (synchronous,
distance, reset), as explained in Section 11.6.2 - Extended Motor Control in Level 3 on page 137.

GB
ROBOPro

106

Properties window for Motor elements;

 Under Motor output you can select which of the Interface’s
output connections are to be used. You can select extension
module outputs under Interface / Extension.

 Under Resolution you can select whether you would like to
control the intensity of the output in 8 steps (1-8) or in 512
steps (1-512).

 Under Interface / Extension you can select whether you
want to use an output of the Interface or an output of an ex-
tension module or of another Interface. You will learn more
about this in Chapter 7 - Controlling several Interfaces

 Under Image you can select an image of the load connected
to the output. In most cases this will be a motor. But you can
also connect an electromagnet, a solenoid valve or a lamp to a motor output.

8.7.5 Lamp output

The Lamp output element allows one of the 8 single-pole lamp outputs O1-
O8 of a ROBO Interface or an Intelligent Interface to be controlled. A lamp
output only ever uses one output connection of the Interface. The other
connection of the load device is connected to the ground socket. You can

only switch on or off a load device connected in this way; you can’t reverse its polarity. You can
learn more about the difference in Section 8.1.6 - Motor output and Section 8.1.8 - Lamp output
(Level 2).

A command that switches the output must be sent via a command element to a lamp element. A
Lamp element can process the following commands:

Command Value Action

On 1 to 8 The lamp is switched on with a brightness of 1 to 8

Off none The lamp is switched off

= 0 to 8 Value 1 to 8: the lamp is switched on
Value 0: the lamp is switched off

GB
ROBOPro

107

Properties window for lamp output elements:

 Under Lamp output you can select which of the Interface’s output connections is to be used.
You can select extension module inputs under Interface / Extension.

 Under Resolution you can select whether you would like to control the
intensity of the output in 8 steps (1-8) or in 512 steps (1-512).

 Under Interface / Extension you can select whether you want to use
an output of the Interface or an output of an extension module or of an-
other Interface. You will learn more about this in Chapter 7 - Controlling
several Interfaces

 Under Image you can select an image of the load device connected to
the output. In most case this will be a lamp. But you can also connect
an electromagnet, a solenoid valve or even a motor to a lamp output.
But a motor connected to a lamp output can only ever rotate in one di-
rection.

8.7.6 Panel input

ROBO Pro offers you the possibility of designing your own panels for your
models. You can learn more about this in Chapter 8.9 - Panel elements and
panels: overview on page 114. This makes it convenient for you to control
your models from the computer. Push buttons, slider controls and data

entry elements are available for use in a panel. The state of these elements can be queried in the
program via the Panel input element. Push buttons return a value of 0 or 1. Slider controls return a
value in a user-definable range (by default, 0 to 100).

Panels can only be used in online mode. You can find out more about this in Section 3.7 - Online
and download operation-what's the difference?

Properties window for Panel inputs:

One panel is associated with each main program or subprogram.
The panel elements are listed under the name of the respective
program. If you have not yet defined any panel elements, then
no elements will appear in the list. So you must first design the
panel before you can link a panel input with a panel element.

The selection under Interface / Extension is ignored in the
case of panel input, as we are not dealing here with actual
inputs on an Interface module.

8.7.7 Panel Output

ROBO Pro offers you the possibility of
designing your own panels for your
models. You can learn more about this in
Chapter 8.9 Panel elements and panels:

overview on page 114. Alongside push buttons and other input elements to control your model,

GB
ROBOPro

108

you can also insert display elements in your panel. In these display elements you can display, for
example, the axis coordinates of a robot or the state of an end switch. You alter the value to be
displayed by inserting a Panel output element in your program and sending the element an =
command, e.g. by connecting a variable, an analog input or a command element to it.

Panels can only be used in online mode. You will learn more about this in Section 3.7 - Online and
download operation-what's the difference?

Properties window for Panel displays:

One panel belongs to every main program or subprogram.
Panel displays are listed under the name of the respective
programs. If you have not yet established any panel elements,
then no elements will appear in the list. So you must first draw
the panel before you can link a panel input to a panel element.

8.7.8 Camera Input

ROBO Pro version 4.x and higher supports the fischertechnik USB
camera. In the Camera window (see Chapter 11) you can add camera
sensor fields with which you can detect colors, motion, lines or balls.
You can query any value of the sensor fields in the program using the

Camera Input element Camera Input properties dialog box The Camera Input properties dialog box
contains a list of input boxes for all camera sensor fields that have been added to the program’s
Camera window. If you have not yet added any sensor fields, this list is empty.

You can read about the type of input boxes made available by particular sensor fields in Chapter
11.3.

8.7.9 IR Input (TXT Controller)

The ROBOTICS TXT Controller features an integrated infrared
receiver for fischertechnik Control Set transmitters (item number
500881). This allows you to use the transmitter to activate a robot
model remotely using infrared or to activate any functions in a
model. The IR remote control transmitter features two buttons

that you can move up, down, left and right from the neutral position. The value of the neutral
position is 0. When you move the button, the values will be from 1 to 15 in each direction (15 =
maximum travel). You can use the IR input to import the values and process them in the ROBOPro
program.

GB
ROBOPro

109

IR input properties window:

You can use the properties window to
specify which button you want to move
in a particular direction. Two options are
available for each direction:

 One option is to use only one
direction (e.g. left button left). In
this case, the IR input only re-
sponds when you move the button
to the left, producing a value from
1 to 15, depending on the move-
ment. This option allows you to
activate a different lamp in each
direction, for instance.

 However, another option is
to select "left button left-right",
which utilizes the full horizontal
range of the button. The IR input
will then produce the values -15
(far left) through +15 (far right).
Neutral position is 0. This option is
very good for controlling motors
because the negative values can move the motor to the left and the positive values move it
to the right. You can simply use the IR input value range -15 through +15 for the motor
speeds 1 through 8. If a value is greater than 8, the motor will simply continue running at the
highest level. For the resolution in 512 speed levels, you can easily convert the values by
multiplying them by 34.

The properties window also lets you set both
remote control ON and OFF buttons so that
you can activate an output, for instance. The
values of the buttons are 0 and 1. Under
switch setting, you can choose whether the
IR input should respond to all ("any") switch
settings of the two IR remote control DIP
switches or to only a particular switch setting,
e.g. to 0-1. This allows you to operate multiple remote controls simultaneously without interference
between them.

8.8 Operators

All program elements in this group are what are called operators. Operators have one or more
orange data inputs. The values from the data inputs are combined by the operator to create a new
value which is transmitted from the operator’s output by means of an = command.

GB
ROBOPro

110

Properties window for operators

All operators use the same Properties window. Through the
Properties window, you can even transform an operator into a
different operator.

 Under Operation you can set how the operator is to
combine its inputs. The individual functions are ex-
plained in the next two Sections.

 Under Number of inputs you can set the number of
inputs the operator is to have.

8.8.1 Arithmetic operators

ROBO Pro makes the four basic operations of arithmetic
available to you as operators. With two inputs, the symbols
look like this:

Plus Minus Times Divided by Minus

A + B A - B A * B A / B - A

If the Minus operator has more than two inputs, all subsequent input values are subtracted from
the value in input A. If the Minus operator only has one input, the operator changes the sign of the
input value.

If the Divided by operator has more than two inputs, the value in input A is divided by all further
input values.

8.8.2 Comparative operators (relational operators)

There are 6 comparative operators to compare values:

equal not equal less than less than
or equal to

greater than greater than
or equal to

A = B A ≠ B A < B A ≤ B A > B A ≥ B

If a comparison is true, the output value is 1, otherwise 0. The output value is always a whole
number even if the input values are floating point numbers.

GB
ROBOPro

111

Besides the not equal operator you can use any of the comparative operators with more than two
inputs. The result then becomes 1 if the condition is true for A and B as well as for B and C, and so
on. For example, this way you can determine with one single operator, whether a value lies within
the given upper and lower bound.

8.8.3 Logical operators

ROBO Pro has three logical operators, which can be used for instance to combine digital inputs.

And Or Not

A>0 and B>0 A>0 or B>0 A <= 0

The logical operators interpret a value greater than zero as yes or true and a value less than or
equal to zero as no or false. Digital inputs return a value of 0 or 1, so that 0 is interpreted as false
and 1 as true.

The “And” operator sends an = command with the value 1 to the elements connected to its output
if all inputs have the value true, i.e. a value >0. Otherwise the element sends an = command with
the value 0.

The “Or” operator sends an = command with the value 1 to the elements connected to its output if
at least one input has the value true, i.e. a value >0. Otherwise the element sends an = command
with the value 0.

The “Not” operator sends an = command with the value 1 to the elements connected to its output if
its input has the value false, i.e. a value <=0. Otherwise the element sends an = command with the
value 0.

The function of logical operators can also be emulated with several Branch elements. But it often
makes for much easier understanding to combine several inputs using operators.

GB
ROBOPro

112

8.8.4 Bit operators

A whole number variable in ROBOPro consists of 16 single bits. Any one of these bits can store a
0 or a 1. These bits become a number by assigning each one of them a power of two:

Bit Numerical value Bit Numerical value

0 1 = 20 8 256 = 28

1 2 = 21 9 512 = 29

2 4 = 22 10 1024 = 210

3 8 = 23 11 2048 = 211

4 16 = 24 12 4096 = 212

5 32 = 25 13 8192 = 213

6 64 = 26 14 16384 = 214

7 128 = 27 15 -32768 = 215

For example, for the number 3 the bits 0 and 1 are set to 1 because 20 + 21 = 3. Bit operators
carry out the same operations as logical operators with the exception that they do it for every
individual bit. Thus 3 AND 6 yields the value 2 because the bit 21 is the only one that is set in both
3 = 20 + 21 and in 6 = 21 + 22. Please note that the numerical value 32768, for which only the bit 215

is set to 1, has a special meaning in ROBOPro and is used for error or blank. To generate a varia-
ble with this value you simply enter nothing (blank) for its value.

And Or Not Exclusive Or Shift left/right

Bit is set if it is
set in A and B

Bit is set if it
is set in A or
B

Bit is set if it
is not set in A

Bit is set if it is
set in A and B
and not in both

The bits in A are shifted B
places to the left (toward
higher bits) or to the right
(toward lower bits).

8.8.5 Functions

Functions are similar to operators but they always have only one input. Functions include trigono-
metric functions, roots, exponential and logarithmic functions.

Note 1: In many cases, functions are difficult to compute. Since the TX Controller makes sure
that every process can carry out a command at least 1000 times per second, the number of
functions that can be evaluated in one command is limited. Networks of organge data lines
are always processed in one command and are not split up. Therefore one should not call

too many functions in a row in an orange network.

GB
ROBOPro

113

Property window for functions

All functions use the same property
window.

 Under Function you can
select which mathematical
function the element will
compute. The single functions
are explained in the following
two sections.

 Under Data type you can
select whether the result of
the function is a whole num-
ber or a floating point number.
Also see Section 13 - Working
with decimals.
Except for the abs function, all functions are available as floating point only.

Basic functions

abs Absolute value: Returns the positive value of the input, for example 3.2 for -3.2

sqrt Square root: Returns the square root of the input, for example 1.4142... for 2.0

Exponential and logarithmic functions

exp Exponential function base e: Returns for an input x the x-th power of Euler’s num-
ber e, that is ex

exp10 Exponential function base 10: Returns for an input x the x-th power of 10, that is
10x or 100.0 for x=2.0

log Logarithm base e: Returns for an input x the power Euler’s number must be raised
to to obtain x.

log10 Logarithm basis 10: Returns for an input x the power 10 must be raised to to obtain
x. For example, for x=1000 we get the result 3.0

Trigonometric functions and inverse functions

All trigonometric functions and inverse functions exist for two different angle measures, that is for
degrees (1 full circle = 360 degrees) and radians (1 full circle = 2 pi).

sin360 / sin2pi Sine: Returns for an input x the sine of the angle x

cos360 / cos2pi Cosine: Returns for an input x the cosine of the angle x

tan360 / tan2pi Tangent: Returns for an input x the tangent of the angle x

asin360 / asin2pi Arcsine: Returns for a sine value x the matching angle

acos360 / acos2pi Arccosine: Returns for a cosine value x the matching angle

atan360 / atan2pi Arctangent: Returns for a tangent value x the matching angle

Note 2: ROBOPro does not use arithmetics with extended precision to compute functions.
Therefore, the precision of results is typically about 2 bits less than the maximal possible pre-
cision of the 48-bit floating point format. The precision of the results is estimated by ROBOPro

and saved in the result.

GB
ROBOPro

114

8.9 ROBO Interface

8.9.1 Digital Branch (ROBO Interface)

With this Branch you can direct program control, ac-
cording to the state of one of the digital inputs I1 to I8,
in one of two directions. If, for example, a sensor on the
digital input is closed (=1), the program branches to the
1 exit. On the other hand, if the input is open (=0), the
program branches to the 0 exit.

If you right-click on the element, the Properties window is displayed:

 Buttons I1 to I8 allow you to enter which of the Interface’s inputs is to be
queried.

 Under Interface / Extension you can select whether you want to use
an input of the Interface or an input of an extension module or of another Interface. You can
find out more about this in Chapter7 - Extension modules and controlling several Interfaces

 Under Image you can select an image for the sensor connected to the input. Digital inputs
are mostly used with push-button sensors, but often also with phototransistors or reed con-
tacts.

 Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch. Normally the 1 exit is below and the 0 exit is on the right. But often it’s more
practical to have the 1 exit on the right. Press Interchange 1/0 connections and then the two
connections will be interchanged as soon as you close the window with OK.

8.9.2 Analog Branch (ROBO Interface)

As well as the digital inputs,
the ROBO Interface has 6
Analog inputs: 2 resistance
inputs AX and AY, two volt-
age inputs A1 and A1, as well
as two inputs for distances
sensors D1 and D2. With this

Branch you can compare the value of an analog input
with a fixed number and, according to the result of the
comparison, branch to the Yes (Y) or No (N) exit.

If you right-click on the element, the Properties window is
displayed:

 Under Analog input, you can select which of the
Interface’s inputs is to be queried. All analog inputs
return a value between 0 and 1023. You can find
further information about the various analog inputs
in Section 8.7.2 - Analog input

GB
ROBOPro

115

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find further information
about the various analog inputs in Chapter 7 - Extension modules and controlling several
Interfaces.

 Under Condition you can select a comparison operator such as less than (<) or greater than
(>) and enter the comparison value. The comparison value should lie in the range from 0 to
1023. When you start a program containing a Branch for analog inputs in online mode, the
current analog value is displayed.

 Under Interchange Y/N connections you can exchange the position of the Y and N exits of
the Branch. Normally the Yes (Y) exit is below and the No (N) exit is on the right. But often it’s
more practical to have the Yes exit on the right. Press Interchange Y/N connections and the
Y and N connections are swapped as soon as you close the window with OK.

8.9.3 Wait for input (ROBO Interface)

The Wait for Input element waits until one
of the Interface’s inputs is in a particular
state or until it changes in a particular way.

If you right-click on the element, the
Properties window is displayed:

 Under Wait for you can select the type of change or the state to
be waited for. If you select 1 or 0, the element waits until the in-
put is closed (1) or open (0). If you choose 0 -> 1 or 1 -> 0, the
element waits until the state of the input changes from open to
closed (0->1) or from closed to open (1->0). In the last case, the
element waits until the state of the input changes, regardless of
whether it’s from open to closed or vice versa. To help you un-
derstand this further, it is explained in Section 3.6 - Other
program elements how you can emulate this element with the
Branch element.

 Under Digital input you may enter which of the Interface’s inputs
I1 to I8 is to be queried.

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find out more about this
in Chapter 7 - Extension modules and controlling several Interfaces.

 Under Image you can select an image for the sensor connected to the input. Digital inputs
are mostly used with push-button sensors, but often also with phototransistors or reed con-
tacts.

8.9.4 Pulse counter (ROBO Interface)

GB
ROBOPro

116

Many fischertechnik model robots also use pulse wheels. These gear
wheels operate a sensor four times for every revolution. With these
pulse wheels you can turn a motor on for a precisely defined number
of revolutions rather than for a given time. To do this, you need to
count the number of pulses at an input of the Interface. For this
purpose there is the Pulse counter element, which waits for a user-
definable number of pulses.

If you right-click on the element, the Properties window is displayed:

 Under Pulse type you can select the type of pulse to be count-
ed. If you choose 0 to 1 (rising), the element waits until
the state of the input has changed from open to closed (0 to
1) the number of times you have specified under Number of
pulses. If you choose 1 to 0 (falling), the element waits until the
state of the input changes from closed to open (1 to 0) the
specified number of times. With pulse wheels, however, the
third possibility is used more often. Here the element counts
both 0 to 1 and 1 to 0 changes, so that 8 pulses are counted
per revolution of a pulse wheel.

 Under Digital input you may enter which of the Interface’s 8
inputs I1 to I8 is to be queried.

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Extension modules and controlling several Interfaces

 Under Image you can select an image for the sensor connected to the input. Digital inputs
are mostly used with push-button switches, but often also with phototransistors or reed con-
tacts.

8.9.5 Digital input (ROBO Interface)

The value of one of the digital inputs I1 to I8 can be queried via the Digital
input element. If the two sockets belonging to the input on the Interface are
electrically connected, the digital input element returns a value of 1 on its
orange connection, otherwise a value of 0.

GB
ROBOPro

117

Properties window for Digital inputs:

 Under Digital input you may select which of
the Interface’s inputs is to be used. Extension
module inputs are selected under Interface /
Extension.

 Under Image you can select an image of the
sensor connected to the input. In most cases
this will be a mini-push-button sensor. A reed
contact is a switch that reacts to magnetic
fields. Even a phototransistor can be con-
nected to a digital contact, although it is really
an analog sensor. You can use a lamp with
lens together with the phototransistor connect-
ed to a digital input as a photoelectric beam,
which is either interrupted (=0) or closed (=1).
On the other hand, if you connect the photo-
transistor to an Analog input, you can
distinguish many graduations between light
and dark.

 Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Extension modules and controlling several Interfaces

On closer examination, there is only one type of program element for all types of inputs. You can
switch input times at any time via the tabs at the top of the Properties window. This is particularly
useful for switching between switch, IR and panel inputs.

8.9.6 Analog input (ROBO Interface)

The value of one of the analog inputs can be queried via the Analog input
element. Unlike digital inputs, which can only return a value of 0 or 1, ana-
log inputs can distinguish fine gradations. All analog inputs return a value
between 0 and 1023. The ROBO Interface, however, has various kinds of

analog inputs, which measure various physical quantities. There are analog inputs for resistance
measurements, for voltage measurements and for a special distance-measuring sensor.

Input Input type Measurement range

A1, A2 Voltage inputs 0-10.23V

AX, AY Resistance inputs 0-5,5kΩ

D1, D2 Distance sensor input ca. 0-50cm

AV Power supply voltage 0-10V

The usual fischertechnik sensors, NTC resistor, phototransistor and photoresistor, transform the
quantity measured (temperature of light intensity) into a resistance. Therefore, you must connect
these sensors to the AX or AY input. The voltage inputs A1 and A2 are designed for all sensors
that produce a voltage between 0 and 10V.

GB
ROBOPro

118

There is no socket on the ROBO Interface for the AV input. It is always linked to the Interface’s
supply voltage. In this way you can, for example, monitor the battery voltage and put the model
into its exit position before the battery is flat.

The distance sensor inputs D1 and D2 accept connection to special fischertechnik sensors that
can measure the distance to, for example, an obstacle.

Properties window for Analog inputs:

 Under Analog input you can select the
desired analog input using the table above.

 Under Image you can select an image of
the sensor connected to the input.

 Under Interface / Extension you can
select whether you wish to use an input of
the Interface or an input of an extension
module or of another Interface. You will
learn more about this in Chapter 7 - Exten-
sion modules and controlling several
Interfaces

It again becomes clear on the Properties win-
dow for analog inputs that for all inputs ROBO
Pro uses a single element, which can be
switched between input types through the tabs.
For simplicity, however, separate input elements
are available ready for selection in the element window.

8.9.7 IR Input (ROBO Interface)

The ROBO Pro Interface has a built-in infrared receiver for the hand-held
transmitter from the fischertechnik IR Control Set, item number 30344. The
infrared hand transmitter is very useful, not only for remote control, but also
generally as a keyboard for your models. There are two receivers for the IR

Control Set, and you can switch between them with the buttons 1 and 2 on the handset. So you
can assign two functions in your ROBO Interface to each button of the handset. You can switch
between two assignments with the shift keys 1 and 2. Alternatively, the 1 and 2 keys can be used
as ordinary keys.

The Intelligent Interface has only two analog inputs, EX and EY. These correspond to the AX
and AY inputs of the ROBO Interface. The other analog inputs cannot be used with the Intelli-
gent Interface!

GB
ROBOPro

119

In the Properties window of an IR input you can use
the tab bar at the top to switch between IR 1, IR 2
and IR 1+2. If you have selected IR 1, the IR input
element only returns a 1 if the corresponding key on
the transmitter is depressed and the transmitter has
previously been set via the 1 key to assignment 1. If
you select IR 2, on the other hand, the
transmitter must have been set to assignment 2
using the 2 key.

But if you select IR 1+2, the setting of the handset
doesn’t matter. In this case, you can also use the
1))) and 2))) keys as inputs.

In the program element this choice is displayed by
means of a white 1 or 2 in the lower right of the
handset symbol In the case of IR 1+2 no number is
displayed in the program element.

GB
ROBOPro

120

9 Panel elements and panels: overview

In ROBO Pro you can define your own panels. Panels make it less cumbersome to control com-
plex models. A panel is displayed on your PC screen. Panels only work in online mode. On this
subject, see Section 3.7 - Online and download operation-what's the difference?

To create a panel, you select Panel in the function bar.

In the empty gray field below you can then insert panel elements. A panel always belongs to the
main program or subprogram in which you were when you created the panel. Therefore it is im-
portant that you always select the right subprogram in the subprogram bar before creating a panel.
Panels are generally created under the main program.

Panels contain displays and control elements. With displays, you can display for example variable
values or text messages. Control elements, on the other hand, function as additional sensors of
analog inputs.

To every panel element that you insert in the panel there is a corresponding
element in the program: a Panel input (for control elements) or a Panel
output (for displays). You establish the link between your program and
your panel through these program elements. You find them in the Inputs,
outputs element group. A different symbol is displayed according to which
type of panel element you link to these program elements. But in the ele-
ment list there are only two elements: one for displays and one for control
elements.

9.1 Displays

Displays are used in a similar way to Interface outputs. You can set the value of a display with an =
command.

9.1.1 Meter

The Meter is based on an analog instrument with pointer. It is
mostly used to display the value of analog inputs; but you can also
use it for variables or other program elements.

The meter is controlled from the program via
a panel output. You will find the Panel out-

put in the element group Inputs, outputs.

You set the value of the meter by sending an = command to the

corresponding panel output in the program. Almost all program
 elements with data outputs send an = command when their value

changes. You can connect analog inputs or variables for example
directly to the panel output.

GB
ROBOPro

121

Properties window for meters

 Under ID / Name you should first enter a name for the meter.
The name is important so that you can distinguish between
more than one meter in your program.

 Under Background color you can set another color than
white.

 Under Minimum value and Maximum value you specify the
values corresponding to the needle positions at the left and
right ends of the scale. If one of the values is less than 0 and
the other greater than 0, a particularly long 0 stroke is drawn.

 The scale consists of long and short strokes. The distance between the long and short
strokes is entered under Step size short / long marks. If both have the same value, only long
marks are visible.

9.1.2 Text display

In a text display you can show numerical values, text, or a mixture
of the two.

The text display is controlled from the program via a panel output. You will
find the Panel output in the element group Inputs, outputs.

As soon as you have linked the Panel output with a text display by means
of its Properties window, the symbol changes and the name of the panel
(e.g. Main) and of the display (e.g. Text) appear.

There are two ways in which you can set the text in the display:

 You set the content of the display by sending an = command to
the corresponding panel output in the program. This is very practical if
you want to use the display to display the value of a variable or other
program element, because most program elements automatically send
an = command through their data output whenever their value changes.
The = command overwrites only the last 6 characters of the display. You can fill the rest of the
dis- play with a pre-entered text. In this way you can supply some explanatory text for the
value in the display. If it is a multi-line display, you can also put the explanatory text in a line of
its own. In multi-line displays only the last 6 characters of the last line are overwritten by an =
command.

 With the Text command you can set the content of the display
as you wish. The Text command is a special command ele-
ment in that it can send, not just a number, but a whole text,
through its output. Like an ordinary command element, the
Text command element can also have a data input. In this
case you can build the numerical value from the data input in-
to the text. If you send a Display element multiple Text commands, the texts are concatenat-
ed. In this way you can mix numbers and text at will.

GB
ROBOPro

122

Control characters in Text commands

The following control characters can be used in the Text command element to achieve particular
effects.

Control
character

Effect

Outputs the value in the data input as a 5-digit number + sign character.

##.## Outputs the value in the data input as a number with two decimal places,
with a period as separator.

##,## Outputs the value in the data input as a number with two decimal places,
with a comma as separator.

\c Clear display and insert subsequent text at the beginning of the display.

Properties window for text displays

 Under ID / Name you should first enter a name for the
display. The name is important so that you can distin-
guish between more than one display in your program.

 Under Text you enter the content of the display. This
content is retained until you send a command to the
display from the program. If you send an = command to
the display, only the last 6 characters of the display
contents are overwritten. The beginning of the text is
retained so that you can display a note before the
number saying what kind of number it is. In the example
illustrated, the text “Var=” is retained. The display has
10 characters, and so 10-6=4 characters are retained.

 Under Digits/columns and under Lines you can set
how many characters the display should allow room for. In a multi-line display you can dis-
play a note like “Var=” or “Visitors” in a line of its own.

 Under Background color and Text color you can alter the color design of the display. Click
on Edit ... to select a color or to define your own color.

9.1.3 Display lamp

The Display lamp is the simplest type of display. It functions in a similar way to a fischer-
technik lamp component connected to an Interface output.

The lamp is controlled from the program via a panel output. You will find the

Panel output in the element group Inputs, outputs.

As soon as you have linked the Panel output with a display lamp by means
of its Properties window, the symbol changes and the name of the panel
(e.g. Main) and of the lamp appear.

GB
ROBOPro

123

Panel input in the element group Inputs, outputs.

You can switch the lamp on or off by sending the corresponding panel output
an On or Off command, as you would also do for a real lamp output. You can
also switch a display lamp on or off via an = command. If the value is greater
than 0, the lamp is switched on If the value is less than or equal to 0, the lamp
is switched off

Properties window for display lamps

 Under ID / Name you should first enter a name for the
display lamp. The name is important so that you can distin-
guish between more than one display lamp in your program.

 Under Color you can change the color of the display lamp.
To do this, click on the Edit button.

 If Initially on has a cross next to it, the display lamp is on
until the corresponding program element receives a com-
mand. Otherwise the display lamp is initially off.

9.2 Control elements

Control elements are used in a similar way to Interface inputs.

9.2.1 Button

You can use the Button panel element like a fischertechnik sensor or switch
connected to one of the inputs of the Interface.

The Button is queried from the program via a panel input. You will find the

Properties window for buttons

 Under Inscription text you can enter the inscription
for the button. This is at the same time the name by
which the button is accessed from the program. In the
case of the button, there is no additional Name/ID field
as found with the other panel elements.

 You can change the color design of the button under
Button color and Text color. To do this, click on Edit.

 If a check mark appears by Pressure switch, the
button functions as a switch rather than a sensor. On the first click on the button it is pushed in,
and then remains depressed until the second click. Otherwise, the button works like a sensor
and springs open again straight away when it is released.

You can connect the panel output associated with the button, like an
Interface digital input, to any program element with a data input, for exam-
ple to the Branch element. If the button is depressed it returns 1 as its

value, otherwise 0.

GB
ROBOPro

124

Panel input in the element group Inputs, outputs.

9.2.2 Slider

You can use the Slider like a potentiometer connected to an analog
input of the Interface. Unlike the button the slider can return not only the
values 0 and 1, but many different values, like an analog input. The

range of values can be set through the Properties window. The slider can be used for example to
set the motor speed between 1 and 8.

The Slider is queried from the program via a panel input. You will find the

As soon as you have linked the Panel output with a slider by means of its
Properties window, the symbol changes and the name of the panel (e.g.
Main) and of the slider appear.

You can connect the panel output associated with the slider, like an Interface
analog input, to any program element with a data input. Very often the slider
is connected to a command element with a data input, so that the slider
controls the speed of a motor.

Properties window for Sliders

 Under ID / Name you should first enter a name for
the slider. The name is important so that you can
distinguish between more than one slider in your program.

 Under Slider knob color you can change the color of the
slider knob. To do this, click on Edit.

 Under Minimum value and Maximum value you enter the
value range for the slider. If you want to use the slider to
control the speed of a motor, the value range should go
from 1 to 8.

ROBO Pro has the usual drawing functions. You will them functions in the element group window
under Draw. In the subgroup Shapes are contained drawing tools for various basic geometric
shapes. In the Text subgroup you will find text-writing tools for various font sizes. The other sub-
groups contain functions to alter color and line thickness.

GB
ROBOPro

125

10 Drawing functions

With drawing functions you can illustrate your panels and programs, to make their function clearer.
Here for example is illustrated a user-designed panel for a robot.

The buttons, co-ordinate displays and end switch lamps are kept in each case in the same color as
the respective individual axes in the schematic drawing of the robot. This results in panel that is
very easy to understand.

The application of the drawing functions should present no great difficulties. So only a few points
that might not be immediately clear are presented in the following:

 Graphical objects like rectangles and circles are not delineated as in many programs by
holding down the mouse button, but through two mouse clicks, one in the upper left corner
and one in the lower right corner.

 Text is not edited in a dialog window, but directly in the working area. When you insert a new
text object, initially only a bright blue frame appears. You can now simply type at the key-
board and the text you type will appear directly in the working area. You can also insert text
from the clipboard with CTRL+V.

 Once you have drawn an object, you can edit it by moving the small blue handles. There are
also handles for turning and distorting objects. A rectangle has two handles at the upper left.
If you displace the second, larger handle, you can round off the corners of the rectangle. You
can exit editing mode by right-clicking with the mouse or by pressing the ESC key.

 If want to edit the object later, select the Edit function in the Draw menu. If you the click on
an object, the bright blue handles will appear again.

 Many objects have two or more editing and drawing modes. While drawing or editing an
object, you can switch between the individual modes with the TAB key on the keyboard. In
the case of a circle, for example, you may select whether you would like to specify two
boundary points or the center and one boundary point. In the case of polygons, you
can change between point editing and functions like “rotate”. With text objects, you can
switch be- tween editing the text and changing the font size or angle of rotation.

GB
ROBOPro

126

 In the Draw menu there are functions to put the object in the foreground / background. With
this function you can put all selected objects (drawn in red) forward or back, so that the ob-
scure other objects or are obscured by them.

 With the Raster snap function in the Draw menu you can switch on or off the character
matrix. You should however take note that the matrix is switched on when you are editing
your program, as all program elements are aligned to the matrix.

 You can alter the alignment of text objects by pressing “CTRL” plus a key from 1..9 on the
numeric keypad. But this only works if the “Num-Lock” light on the keyboard is on. If not, you
must first press the NUM key.

GB
ROBOPro

127

11 Camera functions

ROBO Pro version 4.x and higher supports the use of the fischertechnik USB camera. This camera
can be connected to the USB Host interface of the ROBOTICS TXT Controller (USB1 port). The
camera images can be transferred to the PC using the USB cable or wirelessly via Wi-Fi to be
viewed in ROBO Pro. You can also use the camera as a sensor for detecting colors, motion, lines
and balls. These camera sensor fields can be used both in online and download mode.

The camera can also connect to an available USB interface on the PC and can be operated to-
gether with the ROBO TX Controller or ROBO Interface in online mode. It is not possible to
connect the camera to these devices directly.

11.1 Camera window

All settings for the camera are made in the Camera window. It is available as a tab in the ROBO
Pro program:

In this window first specify whether the camera is to be connected to the TXT Controller or to the
PC under Camera Connection. Using Activate Camera, you can display the camera image in the
camera window without having to start the running ROBO Pro program in online or download
mode.

In the camera window you can also add sensor fields to help a robot follow a line.

When the camera is on, the values of all added sensor fields can be viewed which supply the
sensor fields under Sensor Values. This will always let you know which values are currently
available and what variables they have.

More details about this are provided later in this document.

11.2 Camera viewer

The camera image can be viewed from more than just the Camera window.

The Operating elements element group contains the Camera viewer.
You can place this element on your panel. If you start ROBO Pro in
online mode, this viewer will also display the camera image. You can
then use the panel to control your mobile robot remotely, for instance,
and at the same time see where it travels. You can change the size of
the viewer element in the Draw – Edit menu.

GB
ROBOPro

128

11.3 Camera sensor fields

The camera can be used as a multifunction sensor. ROBO Pro provides different
sensor fields for this purpose. These fields are dragged from the Element window to
the image in the Camera window and dropped at the desired location on the image.

Once there, you can still move them around and use Draw – Edit to change their
size.

Right-clicking on an element that has been added opens the dialog box used to
adjust various settings.

The value that supplies a sensor field can be read in by an orange Camera input
element (level 3) and edited in an executed program.

11.3.1 Color detector

This element calculates the average color in a rectangular field.

You can then change the size of the field later using the Draw | Edit menu.

All pixels in the field are included to ensure that the correct mean value is found
even in highly patterned fields.

You can use the Name, which you can change in the sensor field dialog box, to link to the
input elements.

The element provides 4 input values, R,
G, B and BW, for the primary colors
red, green and blue and the total
brightness as percentages (value
ranging from 0 to 100, 0 = dark or
black, 100 = bright or white).

Please note that the color value may
depend on the lighting. Even though
humans perceive see light from com-
pletely different light sources as white,
the color of sunlight and the light of a
light bulb, for instance, are completely
different. Just like the human eye, the
camera attempts to compensate for the

color of the light. This works best when there is very little white in the image on which the camera
can focus. If the overall camera image is very colorful, it is possible that color correction will not
work properly.

If you want to define the colors very precisely, you can do this with the line finder.

GB
ROBOPro

129

11.3.2 Movement detector

This element detects if the content in a rectangular field of an image changes. You
can use this element for alarm sensors or for detecting hand gestures (waving) or
moving objects.

You can change the size of the field later using the Draw | Edit menu. The Name is
used to create a link to the input elements.

but the change area is very low (1).

You need to set two parameters in
the dialog box of this element.
Change contrast specifies how
much to change the brightness of a
pixel. 100% is a complete switch
from black and white or white and
black. Change area specifies the
percentage of the rectangular field
that has to change. For instance, if
you want to detect ants crawling on
a white sheet of paper, the change
contrast is set very high (50 or more),

The element provides two input fields:
C and A.

C is the mean change in contrast. To
determine the value, only pixels are
included that are above the set
threshold.

A specifies the change area, which is
the percentage of the area in which
the threshold for the change contrast
C is exceeded.

If the value set for the change area A
is not attained, the value for the
change contrast is 0. Therefore, if you

only want to find out if a movement is detected, you can simply compare the C input with 0.

11.3.3 Line finder

This element detects lines that cross the line of the sensor element. The element
detects the position, width and color of the line. For instance, in order to identify a
path which a mobile robot is to follow, place the element on top of the image across
the entire width from left to right.

You can change the size and position of the sensor line later using the Draw | Edit
menu.

The link to the input elements is created using the name.

GB
ROBOPro

130

The Minimum width and Max-
imum width specify the area in
which the width of the line is to
be. You should not set this area
to be larger than necessary
because it requires a considera-
ble amount of computing time to
ensure that only that which is
actually a line is identified as a
line. However, you should also
not make the area too small,
since the lines may blur and
appear wider or narrower when
movements are quick. The unit
for width corresponds to the
scale displayed with the element.
It is best to view the line with the
camera activated in the Camera
window, measure the width
using the scale, and use the
measured width of +-20% to
50%.

Under Minimum contrast you
can set how much the line is to
contrast from the background.
Jet black on bright white corr-

esponds to a contrast of 100%. Please note that in the case of moving models the contrast may
be significantly reduced in some spots due to reflections.

Under Number of results you can set how many lines the sensor element is to detect. The ele-
ment can detect up to 5 lines and provides a separate set of input elements for each line. The lines
are output sorted by their position on the scale: the ones on the negative end of the scale are
shown first.

Select the White on black box to detect bright lines on a dark background instead of dark lines on
a bright background.

Selecting Color detection lets you specify whether the sensor element is to detect only black and
white or to include detection of colored lines. In color mode, for instance, a red line on a white
background provides the same contrast as a black line. You should therefore not use color mode
for black lines. In color mode the sensor element also provides inputs for color components, which
is similar to the Color detector sensor field. In Precision color mode, the sensor element uses
the white background for the precise balancing of white light. Colors detected this way are more
precise and easier to reproduce, but they deviate considerably in some cases from the colors
detected using the Color detection sensor field.

Selecting Position and width detection precision lets you specify how much computing time the
sensor element is permitted to use to determine the position and width of the line most precisely.

GB
ROBOPro

131

You can set the value range of the scale under Minimum value / Maximum value. If you change
these values, you will also have to adjust the width setting. You can set the spacing
between markings on the scale under Axis tick.

The sensor element provides
4 to 7 input fields per line,
depending on the mode. This
makes a total of up to 35 input
fields. The most important
input fields are Contrast and
Position. The contrast speci-
fies how much the line
contrasts with the background.
If the contrast does not reach
the set threshold, 0 is returned
so that the contrast can be
used to identify whether a line
was detected or not. The
position is the center of the
line in the coordinates of the
scale. The width is the width

of the line in the coordinates of the scale as well. In addition, depending on the color mode the
sensor element provides a line brightness B/W and color R (red), G (green), B (blue).

11.3.4 Ball finder

This element detects colorful circular surfaces, balls or other compact, colorful
objects in front of a white, gray or black background and provides the size and
position of the object. To ensure that this function works, only one colorful element
can be in the detection area.

You can change the size of the field later using the Draw | Edit menu.

Use Name to create the link to the input
elements.

Under Minimum color contrast you can set
how colorful the object has to be to be
detected. 100% corresponds to an intense
color against a colorless background.

The Minimum size and Maximum size of the
ball specify in which area the size of the
object is to be. You should not set this area
to be larger than necessary, since it
requires considerable computing time,
making it more likely that it will find
something you did not want to detect.
However, you should also not make the
area too small, since objects may blur and
appear larger or smaller when movements
are quick. The unit for the size

GB
ROBOPro

132

corresponds to the scale displayed with the element. It is best to view the object with the camera
preview, measure the size using the scale and use the measured size of +-20%.

You can select the exclusion objects that have already been added under Exclusion area (see
section 11.3.5). If colorful parts of the model can be seen in the detection area, you can exclude
these surfaces from the detection area. All excluded areas with the same name are taken into
account.

Under Result coordinates you can specify in which area the values should lie on the X and Y axis
of the grid. The Y max value is automatically set to ensure that the coordinates in the X and Y
direction are set to the same scale. Under X/Y grid ticks you can adjust the line spacing in the grid.

The sensor element
provides 4 input fields.
The most important
input fields are Contrast
and X/Y. The contrast
specifies how much the
color intensity of the
object contrasts with the
background. If the
contrast of the set
threshold is not reached,
0 is returned so that the
contrast can be used to
identify whether an
object has been detect-
ed or not. The X/Y
coordinate is the center
of the object in the
grid coordinates. The

size is the diameter of the object, also in the grid coordinates.

11.3.5 Exclusion object

This element is used to hide areas from a ball finder’s detection area if, for instance,
colorful parts of the model can be seen there which could mistakenly be detected
as a ball.

You can change the size of the field later using the Draw | Edit menu.

The name is selected in the ball finder and must be the same for all exclusion objects to be used in
the same ball finder. All exclusion objects with the same name are taken into account.

GB
ROBOPro

133

12 TXT and TX Controller functions

ROBO Pro 4.x can be used with the ROBOTICS TXT Controller and the ROBO TX Controller as
well as with the previous ROBO Interface. You can develop ROBO Pro programs so that they run
without changes on the ROBO Interface as well as on the TX or TXT Controller. But since there
are differences between the interfaces in the inputs and outputs, this is not true for any ROBO Pro
program. The inputs for the ROBOTICS TXT Controller are identical to those of the ROBO TX
Controller. For the sake of simplicity, this manual will only refer to the ROBOTICS TXT Controller
going forward. Everything that applies to the ROBOTICS TXT Controller also applies to the ROBO
TX Controller. For example, the ROBOTICS TXT Controller has 8 universal inputs, which can all
be used as analog input for resistance values as well. The ROBO Interface, by contrast, has only
two resistance inputs (AX and AY). On the other hand the ROBO Interface has an internal input for
supply voltage. This can be measured by the ROBOTICS TXT Controller as well, using an univer-
sal input.

12.1 Installation of the ROBO TX Controller USB-driver

You can find the USB driver for the ROBO TX Controller in the ROBOPro installation folder in
subfolder \USB-driver installation\TXController. There you can select the driver matching your
Windows operating system. Except of the driver folder, the installation works in the same way as
for the ROBO Interface (see also Section 1.2 - Installing the USB driver)

12.2 Environment (Level 1 and above)

In order to show only those options during the development of a program, which are actually
supported by the target interface, you first select via the toolbar button, if a program is designed for
the ROBO Interface or the ROBOTICS TXT Controller.

Depending on which interface is selected, the toolbar button changes its appearance. This button
 and the corresponding menu Environment change neither the current ROBOPro program nor

which kind of interface is connected to the computer (this is adjusted via the COM/USB button).

This button only determines which options are shown in the property windows of program elements.
Below you see the property window for a branch for the ROBO Interface and the ROBOTICS TXT
Controller.

GB
ROBOPro

134

Furthermore, input elements which don't match the selected
interface are drawn with a red border.

Most usually you will work in the environment, which matches
the interface you own. But there are a few exceptions:

 You want to develop a program, which uses a ROBOTICS TXT
Controller as well as a ROBO Interface. In online mode this is
possible. In this case you develop the program parts intended for
the different interfaces in the respective environment. You can change the environment
hence and forth any time.

 You own a ROBOTICS TXT Controller and got a program, which has been designed for the
ROBO Interface, from a friend. If the input configuration is compatible, you can use interface
independent programming (see the next section for further information). If you only want to
do small changes, it is better to stay in the ROBO Interface environment.

 You own a ROBOTICS TXT Controller and want to write a program for a friend, who owns a
ROBO Interface. In this case you can use interface independent programming as well and
develop the program in the ROBO Interface environment.

 The two above points apply of cause also the other way around.

12.3 Interface independent programming

As long as your program uses inputs only, which are available on the ROBO Interface as well as
on the ROBOTICS TXT Controller, you can use your program without changes on the ROBOTICS
TXT Controller as well as on the ROBO Interface. The input mapping is as follows:

ROBO Interface ROBOTICS TXT Controller

D1 (ultrasonic)* I1 (ultrasonic)*

A1 (analog 10V) I2 (analog 10V)

AX (analog 5kOhm) I3 (analog 5kOhm)

GB
ROBOPro

135

AY (analog 5kOhm) I4 (analog 5kOhm)

I1-I4 (digital) I5-I8 (digital)

I5-I8 (digital) C1D-C4D (digital, not for trail sensor)**

If your program uses only the inputs listed above, and if the input mode for the universal inputs I1-
I8 matches on the ROBOTICS TXT Controller as well, you can load your program on the ROBO
Interface as well as on the ROBO TX Controller. The mapping is done automatically, if you start
the program in online or download mode. So you can develop a program in ROBO Interface mode
using ROBO Interface inputs, but select via COM/USB a ROBOTICS TXT Controller.

12.4 Conversion of programs

If you cannot or do not want to do interface independent programming, you can also make the
adaptions to the interface in the program permanently. The menu point Environment / Map inputs
adjusts all inputs to the selected environment in the way listed in the table above. Inputs which are
not assigned in the table (D2, A2, AV), are not mapped and can be mapped manually later. You
can undo this operation by switching the environment and calling the menu function again.

12.5 Universal inputs, sensor type and input mode

With the ROBO Interface, each input has a fixed input type. To the AX input, only resistive sensors
can be attached. The ROBOTICS TXT Controller, by contrast, has 8 universal inputs I1-I8, which
can be controlled by a ROBOPro program such that different sensor types can be attached. The
input mode is selected automatically with the sensor type. In older versions of ROBOPro it was
possible as well to select a sensor image for each input, but this had only an illustrative purpose
and no technical function. With the ROBOTICS TXT Controller it is important that you select the
right sensor type. Otherwise the input is not configured correctly.

In Level 4 and above, you can also change the input mode independently from the sensor type.

With the ROBO TX Controller, some sensors require different input modes, although they could all
be attached to the I1-I8 inputs of the ROBO Interface. This applies mainly to the track
sensor, which requires the 10V digital input mode when used with the TX Controller. During
conversion of programs and when doing Interface independent programming, ROBOPro uses
the previous sensor image as sensor type in order to select the correct input mode.

12.6 Fast counter inputs and extended motor control

The ROBOTICS TXT Controller has 4 fast counter inputs C1-C4 and an integrated motor controller,
which allow for precise motor control. The extended motor control offers two functions, automatic

*Note: Only the ultrasonic sensor with 3 connectors and order number 133009 can be at-
tached to the ROBOTICS TXT Controller. The ultrasonic sensor matching the ROBO
Interface has 2 connectors and order number 128597.

**Note: The abbreviation C1D means, that the counter input C1 is used as simple digital in-

put. If C1 is used as fast counter input, the window shows C1C.

GB
ROBOPro

136

brake after a specified distance and synchronization of two motors. The motor control
system requires that the rotary encoder of motor M1 is connected to fast counter input C1 and so
forth.

When using the automatic brake mode, a number of pulses is specified and the control system
breaks the motor automatically when the target is reached. The control system also calculates the
braking distance of the motor and starts breaking early enough, so that the chosen distance is
reached exactly even with fast motors and high resolution rotary encoders.

When using the synchronization, two motors are controlled such that they make the same num-
ber of turns in the same time. This is most useful for track vehicles, which are going exactly
straight this way. If one motor becomes slower, the motor control system automatically slows down
the other motor.

You can also combine these two functions and let the motors go a defined number of pulses with
synchronized speed.

12.6.1 Encoder Motor (Level 1)

To comfortably control motors with built-in pulse generator or encoder, the
new programming element Encoder motor is available in level 1 and above.

Using this element, you can either move one motor a defined number or
pulses, or two motors synchronized, with or without a predefined num-
ber of pulses. The program element offers the following control options:

If you want to move only one motor with a defined number
of pulses, you choose the action distance and enter the
desired speed, direction and distance.

Using action synchronous, you can move two motors
speed synchronized. You can independently select the
direction for both motors. The speed is selected only
once for both motors, since both motors shall turn equally
fast.

The action synchronous distance combines, as ex-
plained above, a defined number of pulses with speed
synchronization of 2 motors.

With action stop, you can stop both motors any time and
also end speed synchronization and clear a remaining
distance, if applicable. In case you start motors using this
element, you also have to stop them again with this
element before you can use the usual motor control elements again.

GB
ROBOPro

137

If you defined a distance, the element does not wait until the chosen dis-
tance is reached, but immediately continues with the next program element.
This way the program can continue and stop the motors in case of some
event. In order to test if the motor has reached its target, there are internal
inputs M1E to M4E, one for each motor. You can query these inputs using a
branch or a wait for input program element.

The inputs M1E to M14 become 1, if the corresponding motor had reached
the given number of pulses (distance). The inputs stay 1 until you
send a new distance command for the motor. For the wait element it is
therefore best to wait for 1 as in the picture. If you control two motors
synchronously, you need a wait element for the first motor only. In the case
of synchronously controlled motors the inputs become 1 when both motors
have reached their destination.

An example for using this element is shown in the section 4.4 Tango on page 3.

12.6.2 Extended Motor Control in Level 3

In level 3, a motor is controlled by sending commands to an orange motor element.

Using the command synchro-
nous, a motor can be
synchronized with another
motor. If, for example, you
send the command synchronous
with value 1 to motor 2, motor 2
is synchronized with motor 1. In
level 3, you can also synchronize
more than two motors. The
synchronization is cancelled, if
you send to a motor the
command synchronous with value
0.

With the distance command, you
can define a number of pulses to
go for a motor. As soon as this
number of pulses is reached, the
motor breaks. The defined dis-
tance can be cancelled at any time by sending a distance command with value 0.

If you want to combine synchronization with distance, you must send the distance command to
both motors. The Synchronous command is send to one motor only, though, with the number of
the other motor as command value.

Neither the synchronous nor the distance command actually starts the motor. For this you need
a left, right or = command.

You wait for a target reached condition in the same way as in level 1. Of course there are also
level 3 elements for the target reached inputs.

GB
ROBOPro

138

After this, to control the motor with normal motor commands again, first you have to cancel the
distance and synchronous command again by sending a distance and a synchronous command
with the value 0. But previously, you must have sent the motor a stop command. The distance
and synchronous command only stop the motor as long as the commands are active. If you cancel
the commands without stopping the motor first, the motor carries on running.

12.7 Display

Similar to an operation panel, the display can be used to control a program or to output status data
on the display of the ROBOTICS TXT Controller. A display is designed in the TXT/TX Display tab
in the same way as on operation panel:

The available control elements are also the same as for an operation panel: a slider and a push
button. For displaying status data, a text display is available. For structuring the display area, there
is a line element and a rectangle element.

The connection between display elements and the program is done in the same way as for an
operation panel using input and output elements.

If you want to change the size of a control element, you can use the menu option Draw / Edit.

GB
ROBOPro

139

The monochrome display controls of the ROBO TX Con-
troller are operated via the two buttons on the interface.
You can select different control elements by pressing the
left or right button shortly. If you press the left or right
button longer, the control element is modified. A slider
button slides, a push button is pushed.

You need to assign in the property window of each control
element a selection order number. These numbers define
in which order the control elements are selected using the
buttons.

In the same way as every subprogram can have its own operation panel, every subprogram can
have its own display content. But there is a difference: the display contents changes automatically
if a subprogram is entered or left. This way it is possible to develop quite complex menu structures
without much effort. It is advisable to run all subprograms with display contents in a single process.
Otherwise it might become difficult to predict which display contents is shown in what situation.

Important note: If you want to stop a program in download mode which uses the display

functions, you have to press both buttons simultaneously.

GB
ROBOPro

140

13 Working with decimals

ROBOPro offers the option to work with decimals (also called decimal
fractions). This means that you can perform arithmetic operations not only
with integer numbers like 1 or 2, but also with fractional numbers like
3.99482925 with a precision of 9 digits. The ROBO TX Controller uses so-
called floating point arithmetic to implement this feature. It can be used with
the ROBOTICS TXT Controller in online and download mode. The ROBO
Interface supports floating point arithmetic in online mode only.

If you are interested in the details: The precision of arithmetic operations is 48 bits with a 32 bit
mantissa. This corresponds to a precision of slightly more than 9 decimal digits.

In Version 2.1.1.0, the following functions are supported:

 floating point variable

 floating point list

 operators +, -, *, /

 conversion integer / floating point and vice versa

This element is located in the element win-

dow with the operators.

 branch element which compares a floating point and a
constant

 text command with floating point formatting

There are no special floating point elements. Instead you can
switch the data type in the property window of the corresponding
integer element. Floating point elements are displayed with a thick border.

13.1 Comparing floating point numbers

There is no 3-way comparison element for floating point numbers. The reason is that floating point
numbers should not be compared for equality, because the value of a floating point number is
usually not exact cause of round of errors. For example with floating point numbers, the result of
10· 0.1 is not equal to 1, because 0.1 cannot be represented exactly with binary floating point
numbers.

You can compare a floating point number with a floating point constant using the level 3 compari-
son element. There will be comparison operators as well.

GB
ROBOPro

141

13.2 Displaying floating point numbers

Since there is not as much space on the TX Display as on a computer monitor, ROBOPro offers
some options to display floating point numbers in a space saving way. The exponent is typically
displayed using the exponent notation common in technology, for example k for thousand as in km.
The exponent abbreviations are as follows:

Abbreviation Name Exponent

a atto 10-18

f femto 10-15

p pico 10-12

n nano 10-9

u micro 10-6

m milli 10-3

k kilo 103

M Mega 106

G Giga 109

T Tera 1012

P Peta 1015

E Exa 1018

In case the exponent is outside of this range, which mostly happens in case of calculation errors,
the error ?FORMAT? is displayed.

Of cause floating point numbers can be displayed using the notation more common with computers
and pocket calculators as well. The text command offers the following options:

Format Output 1 Output -0.01 Output 1000

####.#### 1.0000 -0.0100 ?FORMAT?

1 -0 _1000

##.### ̂ _1.000 -10.00m _1.000k

##.###^## _1.000^00 _1.000v02 _1.000^03

##.#####^^#### _1.0000E+0000 _1.0000E-0002 _1.0000E+0003

GB
ROBOPro

142

Example:

Two constants are added and the result is displayed for 5
seconds. Then the display is erased (entry of \c in the
text command) and the word “End“ is displayed.

Please note the following hints regarding formatting:

 The number of valid digits as well as the number of digits
in the exponent can be varied in all formats.

 You can use a point or comma as decimal separator.

 In front of the point or comma, at least 2 # characters are
required, one for the sign and for the at least 1 digit in
front of the decimal separator.

ROBOPro uses the following codes to display special values and to flag error situations:

 0 is used to represent an exact zero (no error) or numbers that are less than approximately
±10-2500.

 ?FORMAT? The number cannot be displayed using the chosen format.

 ?OVERFLOW? The calculation resulted in an arithmetic overflow. For example, division by
zero results in an overflow.

 ?NAN? Not A Number is the result of invalid calculations like square root of -1

 ?UNDEFINED? This value is e.g. used for subprogram inputs before they receive a value.

 ?LOST? is displayed for entries like 0/0 etc.

 ?CORRUPTED? This should never happen. If you have a program that shows this value,
please send it to the fischertechnik service.

 ??.?? See below.

13.3 Calculation of Precision
In contrast to most other floating point systems, ROBOPro calculates in each operation also the
number of valid digits (or bits). Digits that were lost during computation are displayed in the text
output as “?“. For example, in ROBOPro the calculation 1.00000001 - 1.00000000 yields the result
9.8??n. The difference would be exactly 0.00000001 or 10n. However, ROBOPro displays one
digit more than it can compute exactly. The last digit merely helps determine whether the value
should be rounded up or down, in this case from 9.8n to 10n. If you compute 1.0-1.0 in ROBOPro
the result is ??.??p. This means 0 with a precision of about 99.99p or 100p, that is 10 to the power
of -10. As previously mentioned, an exact 0 (without error) exists, but it is unusual.

