ROBO Pro

TABLE OF CONTENTS

1 Introduction - controlling
fischertechnik models with ROBO

Pro....oooceeeiieiieieeee, 4
1.1 Installation of ROBO Pro.................. 4
1.2 Installing the USB driver 5

1.2.1 USB driver installation under
Windows Vista, 7, 8and 10........ 6
1.2.2 USB driver installation under

Windows XP.....ccovvvvvvvivenennnnn. 7

1.3 FirstSteps.....coooovvviiiiiiiiin. 9
2 A quick hardware test before

programmingc..euennnnnn.. 11

2.1 Connecting the Interface to the PC.... 11
2.2 Getting the right connection — Interface

SEttiNgS...evvveiiee e 1
2.3 Wrong connection: no connection to the
Interface!?covviieeeeiiiiiiiinn, 12

2.4 s everything working-the Interface test13

3 Level 1: Your first control program. 15
3.1 Creating a new program 15
3.2 The elements of a control program.... 16
3.3 Inserting, moving and modifying

program elements........................ 16
3.4 Linking program elements............... 19
3.5 Testing your first control program 20
3.6 Other program elements................. 22
3.6.1 Timedelay......ccccevvevevennnnnn. 22
3.6.2 Waitforinputccoeeeeeeennns 23
3.6.3 Pulsecounter............ceoeeee.. 23
3.6.4 Counterloop........cceeeeeeeeennns 24
3.7 Online and download operation—what’s
the difference?........ccovvvvvveienennenn. 24
3.8 Tipsand THCKSeeeeeeevvviiinnnnnnn. 26
4 Level 2: Working with subprograms 28
4.1 Your first subprogram 29
4.2 The subprogram library 33
421 UsingtheLibrary................... 33
4.2.2 Using your own library 33
4.3 Editing subprogram symbols........... 34
L I 110 o S 35

4.41 Motor control with pulse switches37

4.4.2 Motor control with encoder motors40

4.43 Tango main program.............. 41

fischertechnik==x

4.5 Tango 2: Communication through Wi-Fi,

Bluetooth or RF data link................ 43
451 Radio settings for the Robo

interface..........ccvvveeeeeeeeenen.. 46

4.5.2 Bluetooth settings for the TXT or
TX Controller........ccceeeeeeeannnn 49
5 Level 3: Variables, panels & Co 51
5.1 Variables and commands............... 51
5.2 Variables and multiple processes...... 58]
5.3 Panels......ccccovveiiiiiiiiiiiiiiieieiiin, 54
5.4 TIMEIS ...oevvvuiiieeiieiiiiiieieeee e 57
5.5 Command inputs for subprograms..... 58
5.6 Lists (Arrays)coeeeeeeeeananaaaannns 61
5.7 Operatorscoveeeeeiiiieaaiaiaaannn 62

6 Level 4: User defined commands ... 66
6.1 Processing of commands in a process 66

6.2 The command filter....................... 67
6.3 Sending arbitrary commands to sub-
PrOGramSuueeeeeeeeeriieeeeeeeeenneen 68
7 Controlling several Interfaces 70
7.1 Controlling Extensions................... 70
7.2 TXT Controller, TX Controllerand
ROBO Interface together................ 70
7.3 Interface assignments in subprograms72
7.4 Tips and Tricks........ccuvuveeeeeeeennnnn 73
7.5 Changing the ROBO Interface serial
NUMDETvvveeeeeeeiiiiiee e 73
8 Program element overview............ 75
8.1 Basic elements (Level 1)................ 75
811 Start......oocoii 75
812 End...oocccvviiieiieiiiiii, 75
8.1.3 Digital Branch...............cuuuuee 75
8.1.4 AnalogBranch...............cueue. 76
8.1.5 Timedelay......ccceuvvvvvvvvrennnnns 77
8.1.6 Motor output.........ceeeeereennnnn. 77
8.1.7 Encoder Motor (Level 1) 78
8.1.8 Lamp output (Level 2)............. 79
8.1.9 Waitforinput................cco.... 80
8.1.10 Pulse counterceeveeenens 81
8.1.11 Counterloopcceeeeeeveennnn. 82
8.1.12 Soundceevviiiiiiiiiiiiiiiiiaes 82
8.2 Send, Receive (Level 2-4) 83
8.2.1 Sender (Level2)cevevennnnes 83
8.2.2 Receiver (Branch when command
is received, Level 2)................ 84

ROBOPro

8.23 Receiver (Level3)ccounenee 85
8.24 Wait for command (Level 4)...... 86
8.25 Command Filter (Level 4)......... 87
8.26 Exchange Message (Level 4).... 87
8.2.7 12C Write (Level 4) 87
8.28 [2CRead (Level4)................. 89
8.3 Subprogram I/O (Level 2-3) 89
8.3.1 Subprogram entry (Level 2)...... 90
8.3.2 Subprogram exit (Level 2)........ 90
8.3.3 Subprogram command input ...
(Level 3) uvveeeeeeeeeeeiiiiiiieeneen 90

8.3.4 Subprogram command output
(Level 3) cuveeeeeeeeeeeiiiiiiiieennn 91

8.4 Variable, List, ... (Level 3)............... 91
8.4.1 Variable (global).................... 91
8.4.2 Local variables 92
8.4.3 Constant.........ccccccuvvuuvnnnnnnns 93
8.4.4 Timervariable 93
845 List..uvveeeeiiiiiiiiiiieeeeeeeins 94
8.5 Commands (Level 3)ccccuvee. 96
8.5.1 = (Assignment)cccunn 97
852 +(PlUS)....cceevurriieeeeeeeinnne, 97
853 —(MinUS) ..ccoivviiiiiieeeeeiie 97
854 Right .ooovvviviiiiiiiiieieeiiiiins 97
855 Left.iiieiiiiiiiiiiiiieeeeeis 97
856 StOP...covvviiiiiiiiiiiiiiieee 97
857 ONuuerieieiiieiiiiiiiiee e 98
858 Off cuueiiieeieiiiiiiiiiieee e 98
859 TeXtiwiiiiiiiiiiiiiiiiieee e 98
8.5.10 Appendvalue...........ccceeeeneen 98
8.5.11 Delete value(s)cccceunnnne 98
8.5.12 Exchange values................... 99
8.6 Compare, wait for, (Level 3)............ 99
8.6.1 Branch (with data input)........... 99
8.6.2 Comparison with fixed value100
8.6.3 Compare..........ccevvvvvvunnnnnnn. 100
8.64 Timedelaycccoouvuvunnnnnns 101
8.6.5 Waitfor.......ooovvveereeeriinnnnn 101
8.6.6 Pulsecounter.............ccccu... 102
8.7 |Interface inputs/outputs 102
8.7.1 Universalinput..................... 102
8.7.2 Counterinput..........cccovvunn... 103
8.7.3 Motor position reached........... 104
8.7.4 Motor outputcccevvrvnnnnn. 105
8.7.5 Lampoutputccevvrnnnnn.. 106
8.7.6 Panelinput.............uuunnnn.... 107
8.7.7 Panel Output..........ccevvvnnnn... 107
8.7.8 Cameralnput.........ccovvunnn... 108
8.7.9 IR Input (TXT Controller)......... 108
8.8 Operators...........eeeeeeeeeennnnnnnnnnnn 109

8.8.1 Arithmetic operators.............. 110
8.8.2 Comparative operators (relational
OPErators)ccevveuvvveeeeeennn 110

8.8.3 Logical operators.................. 111
8.8.4 Bitoperators...........cceeeeennn. 112
8.8.5 Functionsccceeveeeeenn. 112
8.9 ROBO Interfaceccevvvuvvvnen. 114

8.9.1 Digital Branch (ROBO Interface).114
8.9.2 Analog Branch (ROBO Interface)114
8.9.3 Wait for input (ROBO Interface).115
8.9.4 Pulse counter (ROBO Interface).115
8.9.5 Digital input (ROBO Interface)...116
8.9.6 Analog input (ROBO Interface)...117

8.9.7 IR Input (ROBO Interface) 118
9 Panel elements and panels: overview 120
9.1 Displayscoevveeiiiiiiiiiiiiiiiien, 120

911 Meter.oooovvvvieiiiiciieeinnn, 120

9.1.2 Textdisplay........cccevrvennnnnn. 121

9.1.3 Display lamp..........ccceeeeeenn. 122
9.2 Control elements...........ccccevvunn.e. 123

9.21 Buttoneeeeeiiiiiiiiieeeeee 123

922 Slider....ccoovvveveeiiiiieieninnn, 124
10 Drawing functions.................... 125
11 Camera functionscccceeen.. 127
11.1 Camera windowcccvvunnnenns 127
11.2 Camera VIEWETcvuveeevvnnneenns 127
11.3 Camera sensor fields................... 128

11.3.1 Color detector...........ccvvnnn... 128

11.3.2 Movement detector............... 129

11.3.3 Linefinder........cccvvvveevennnnnns 129

11.3.4 Ballfinder...........ccoeevvvvvnnnnns 131

11.3.5 Exclusion object 132

12 TXT and TX Controller functions... 133
12.1 Installation of the ROBO TX Controller

USB-driVerccvvvvviiiiieiiiiieiiennns 133
12.2 Environment (Level 1 and above).... 133
12.3 Interface independent programming .134

12.4 Conversion of programs 135
12.5 Universal inputs, sensor type and input
MOUE . eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneees 135
12.6 Fast counter inputs and extended motor
(070]11 (o] 135
12.6.1 Encoder Motor (Level 1)......... 136
12.6.2 Extended Motor Control in Level 3.137
12.7 DiSPlaY...evvveeeeeeeeeeieeeeiiiieeieannnns 138
13 Working with decimals............... 140

13.1 Comparing floating point numbers ... 140

fischertechnike=x

ROBO Pro

13.2 Displaying floating point numbers 141
13.3 Calculation of Precision................. 142

Modifications and corrections
made by: Peter King
www.procontechnology.com.au

fischertechnik==x

http://www.procontechnology.com.au/

ROBOPro

1 Introduction - controlling fischertechnik models with ROBO Pro

You must have asked yourself, at some time, how robots appear to carry out their allotted tasks as
if controlled by an invisible hand. It's not just robots, but in many other fields as well, that we
encounter control and automation technology. Including fischertechnik. By chapter three, we will be
designing together a little control program for an automatic garage door, and in doing so you'll learn
how control problems like this can be solved and tested with the help of the ROBO Pro software for
Windows. ROBO Pro is very simple to operate. Control programs, or more precisely flowcharts (as
well as data flowcharts), as we shall learn can be created using the graphical user interface of
ROBO Pro, almost exclusively by manipulating the computer's mouse.

In order to be able to control your fischertechnik models through your PC, you will need, as well as
the ROBO Pro control software, an Interface to connect the computer with the model. It transforms
the software commands so that, for example, motors can be controlled and sensor signals can be
processed. The ROBOTICS TXT Controller (item number 522429), the ROBO TX Controller (item
number 500995), the earlier ROBO Interface (item number 93293) and the Intelligent Interface
(item number 30402) are available from fischertechnik. You can use any of these Interfaces with
ROBO Pro. However ROBO Pro only supports the online or passive mode of the Intelligent
Interface. And ROBO Pro no longer supports the very early parallel Interface (item number 30520).

A few words about the layout of this manual. It is divided into two parts. The first part, from
Chapter 1 to Chapter 4, describes the basic procedure for programming with ROBO Pro. This
gives you a lot of information and background knowledge about programming in general and about
how to use the ROBO Pro software.

The second part consists of Chapters 5 to 7, and gives an introduction to the functions needed for
more advanced programs.

Chapters 8 onwards are more for reference. So when you're familiar with the operation of ROBO
Pro after reading the first part and you need very specific information, here is where you will find a
comprehensive explanation of the individual program elements.

If you are already familiar with ROBO Pro and only want to find out what new features were
added with the ROBO TX Controller, you should read only Chapter 11: Camera functions of
the manual.

So let's go! You must already be itching to know what possibilities ROBO Pro gives you for pro-
gramming your fischertechnik models. Have fun!

1.1 Installation of ROBO Pro

System requirements for installing ROBO Pro are:

e aPC with Windows XP, Vista, 7, 8 or 10.

e anavailable USB interface to connect the ROBOTICS TXT Controller, the ROBO TX Control-
ler or the ROBO Interface (including the ROBO LT Controller).

e Adobe Acrobat Reader to view the ROBOTICS TXT Controller user manual and the informa-
tive accompanying documentation for the different ROBOTICS construction sets.

fischertechnike=x

ROBOPro

First of all, of course, you must start the computer and wait until the operating system (Windows)
has finished loading. The Controller should only be connected to the computer after successful
installation of the ROBO Pro software. Insert the installation CD into the CD-ROM drive. The
installation program "Setup.exe" on the CD will then be started automatically.

In the first Welcome window of the installation program you push the Next button.

The second window, Important Notes, contains important up-to-date notes about installing
the program or about the program itself. Here too, you click on the Next button.

The third window, License Agreement, displays the ROBO Pro licensing contract. You must
click "Yes" to accept the agreement before you can proceed to the next window with Nex

In the next window, User Details, please enter yourname.

The next window, Installation Type, allows you to choose between Express Installation
and Customized Installation. With customized installation, you can choose to leave out in-
dividual components of the installation. If you are installing a new version of ROBO Pro over
an older version, and you have modified some of the sample programs in the older version,
you can exclude the sample programs from the customized installation. If you don't do this,
the modified sample programs will be overwritten without warning. If you select customized
installation and press "Next", an additional window, allowing you to select the components,
will appea

In the Target directory window you can select the folder or directory path where you want
the ROBO Pro program installed. This will normally be the path C:\Program Files (x86)\
ROBOPro. However, you can also enter another directory.

When you push the Finish button in the last window, the installation is performed. As soon
as the installation is finished - this normally only takes a few seconds - the program an-
nounces successful installation. If there are problems, an error message is displayed, which
should help you to solve the problem.

1.2 Installing the USB driver

This step takes place automatically if the ROBOTICS TXT Controller, ROBO TX Controller or
ROBO Interface is connected to the USB interface after installation of the ROBO Pro software has
been completed.

fischertechnik==x

Important note regarding the installation of the USB driver

The USB driver can only be installed by a user with PC systems administrator privileges.
Should the installation program advise you that you are not permitted to install the USB driv-
er, have your system administrator install the driver. Otherwise the interfaces will not run via
USB.

ROBOPro

In order to install the USB driver, you must first connect the ROBOTICS TXT Controller, the ROBO
TX Controller or the ROBO Interface with a USB cable to your computer and supply it with power.
Windows recognizes automatically that the Interface is connected and displays different messages
depending on the version of the operating system:

1.2.1 USB driver installation under Windows Vista, 7, 8 and 10

The following message appears initially:

|

Installing device driver software * *
Click here for status.

ELURERR RN O BRI S

If you left-click with your mouse on the message, the following dialog appears:

-
| Driver Software Installation [

Installing device driver software
ROBO TX Controller (@] Searching Windows Update...

Obtaining device driver software from Windows Update might take a while,
Skip obtaining driver software from Windows Update

Searching Windows Update can take several minutes. Since the driver software was pre-
loaded onto the computer when ROBO Pro was installed, you can skip downloading the
Windows Update driver software. Do not cancel the installation process by clicking Close
or else the driver will not be installed. Once the USB driver installation is completed, the
following message appears:

r_'_! Driver Software Installation ﬁ
fischertechnik USB ROBO TX Controller (COMS) installed
fischertechnik USB ROBO TX Controller +f Ready to use
(COME)

Close

The driver is now installed and the device can be used. Note: The messages shown here are
from Windows 7. The messages may appear slightly different depending on your version of
Windows.

n fischertechnik=x

ROBOPro

1.2.2 USB driver installation under Windows XP

The installation under Windows XP is very different from the other versions of Windows.
The procedure is therefore described here separately.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

5

Thiz wizard helpsz you install zoftware for:

fischerechnik USB ROBO Tx Cantroller

:.\'Jj If your hardware came with an installation CD
—i&= or Hoppy disk. insert it now.
‘wihat do you want the wizard o do?

@ |nztall the software automaticaly [Fecommended]

e 4 stall from a list or specific locabon [Advanced)

Click Mext to continue,

< Back I Mest » I Cancel

Here you must select Install the software automatically and press Next.

fischertechnik==x

ROBOPro

Under Windows XP, you may see the following message after pressing "Next":

Hardware Installation

" "-\ The software you are inztalling for thiz hardware:
L

fischertechnik IISB ROBO T Controller

haz naot pazzed Windows Logo testing to verify it compatibility
with *Windows ¥P. [Tell me why this testing iz impaortant.]

Continuing your installation of thiz software may impair
or desztabilize the correct operation of pour spstem
either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
passed Windows Logo teshing.

Eantinueﬁ{wyway | STOP Ingtallation I
&0

The USB driver is still being tested by Microsoft. Once testing is completed the driver will be
approved by Microsoft, so that this notice no longer appears. In order to install the driver, press
Proceed with installation.

Finally, the following message will appear:

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

5

The wizard hasz finizhed inztalling the zoftware for:

fischenechnik USB ROBO Tx Controller

Click. Finizh to cloge the wizard,

< Back I [\Finish I Canze]

My

Press Finish to complete USB driver installation.

fischertechnike=x

ROBOPro

1.3 First Steps

Curious? Then simply start the program ROBO Pro. To do this, you click on the Start button on the
task bar and then select Programs or All programs and ROBO Pro. In this folder of the Start
menu you will find the following entries:

The Uninstall entry allows you to uninstall ROBO Pro. The Help entry opens the ROBO Pro Help
file, and the ROBO Pro entry opens the ROBO Pro program. Now select the entry ROBO Pro to
launch the program.

¥

10 5
&
T

i
|
i
i

sjiojelsixiEInSITIDIEIR

(4

W e

‘_(
L=
.

>
3

The window has a menu bar and toolbar with various operating buttons above as well as a window
on the left-hand side with program elements. If you see two stacked windows in the left margin,
ROBO Pro is not set on Level 1. To allow the functionality of ROBO Pro to match your growing
knowledge, you can set ROBO Pro from Level 1 for beginners up to Level 5 for experts. Look in
the Level menu to see whether there is a checkmark by Level 1: Beginners. If not, please switch
to level 1.

ROBO Pro is configured to use the ROBOTICS TXT Controller or the ROBO TX Controller as
interface. You can see this by the presence of the button TX/TXT in the toolbar. In Chapter 12.2
Environment you learn how you can switch to the earlier ROBO Interface and what you need to
pay attention to.

Now you may either create a new program file or open an already existing program file. We do not
intend to create a new program file until Chapter 3, when we will write our first control program. To
familiarize ourselves with the user interface, we shall open an already existing sample program. To

fischertechnike==

ROBOTY

(=

Open

ROBOPro

do this, you click the entry Open in the File menu, or use the Open button in the toolbar. The
sample files are found in the folder C:\Program Files\ROBOPro\Sample Programs.

Select a file _?Ilj
Look in: I 1) Sample Programs j QT i@
h |-5)Robo Mobile Set 80 Test10 SP Position.rpp £
" pote Samplel TeachInTimer Object.rpp gTestw SP Multireturn.rpp §
My Recent ample2 Panel Rob 3.rpp RgTestZO TR 2 main threads.rpp ¥
Documents B8 Test21 TR 2 main threads loop.rpp
@. top.rpp gTest:ﬂJ Input to display.rpp
A%t stop loop.rpp gTestal Variable.rpp
Desktop ‘est02 Switch Motor on off.rpp gTestG}Z Timer.rpp
‘est024 IR Motor on off.rpp @Testtﬁ Operator.rpp
. est03 Position.rpp gTest:M Array.rpp
HyDoo 4 est04 Wartenh.rpp gTestBS MessageQueue in Sub.rpp
R A est0S Eindus an Motor.rpp %Testﬁs Motor.rpp
‘est06 Z&hlschleife.rpp gTesG? Motor.rpp
?I '. Test07 Motor direction.rpp gTest Adder.rpp
My Computer < | _;1
‘ﬁ File name: lTeslUU Motor start stop.rpp j Open I
-« .
My Network Files of type: IF!EIBD Pro program (*.rpp) ‘:] ﬂl
Places I~ Open as read-only
£
Open the file \Level3\Motor start stop.rpp:
il
I8 D e e Rpens Pan WS i
{ I A .
gwu[?loonlltltﬂ Df 58 Q|
———)
.&,' v [| s | 3 O | i | St |
+ & 3
x
- e
2 - =M
4 O}o ¥ " @
100 5= r -h2
i (13 2.
_rf - Program elements
L
G,
- .
pros Program window
i 2 o
skt 2 S o v o
———

Here you can see what a simple ROBO Pro program looks like. In programming, —control-program
flow charts are created in the program window using program elements from the element window.
The finished flow charts can then be checked before being tested using a connected fischertechnik
Interface. But not too fast: we shall learn programming step-by-step in the following
chapters! Having thus gained your first impression of the user interface, you close the program file
using the Close command in the File menu. You can answer No to the question of whether you
want to save the file.

fischertechnike

ROBOPro

2 A quick hardware test before programming

Clearly, the Interface must be connected to the PC for us to be able to test the programs we will
later create. But, depending on the Interface used (ROBOTICS TXT Controller, ROBO TX Control-
ler or ROBO-Interface), appropriate interface connection settings must also be made and tested.
We will do this in the coming chapter.

2.1 Connecting the Interface to the PC

This should not be a great problem. The connecting cable supplied with the Interface is connected
to the Interface and to a USB port on the PC.

The connections for these ports are normally found on the back of the computer. The exact place-
ment of the connections is described precisely in the user manual of your PC; please look it up
there. USB connections are also often found on the front of a PC. Don't forget to give the Interface
a power supply (mains unit or battery). The individual connections of the Interface are described in
detail in the user manual of the respective equipment.

2.2 Getting the right connection - Interface settings

For the connection between the Interface and the PC to function correctly, ROBO Pro must be
configured for the Interface currently in use. To do this, start ROBO Pro using the ROBO Pro entry
on the Start menu under Programs or All programs and ROBO Pro. Then push the COM/USB
on the toolbar. The following window will appear:

% Interface / Port L 7 i:-?-,l
Port Interface
CoM1 @ ROBOTICS TXT Controller:
Comz2 1 ROBO TX Controller
COM3) ROBO Interface
COomM4) Intelligent Interface
@) USEBluetooth

) Simulation
oK] l Cancel

Here you can select the port as well as the Interface type.

fischertechnik==x

1 r

LUsE

ROBOPro

Once you have selected the appropriate settings, close the window with OK. Now open
the Interface test window with the Test button on the toolbar.

Interface best ed |
1 | Infa I
~ Inputs Cutputs:
1[0 |oigial Skohm Switch, ..) =] ':'_} mode S(E?DS O cow 5 Stop © cw
+ M1 * 5
2o [Digital Skohm (Switch, ..} | | | £ o1+0z € 512 J [8
13 |0 |Digial Skobm (Switch, ..y | | | M2mode steps ooy @ stop e
M2 =g
[0 [bigtal skotm tswitch, .3 =] | |~ gsroa cme) ¢
15[IU IDigitaI Skohm (Switch, 1.0 j M3 mode steps cow @ Stop € cw
& M3 (Gl
i] iqil il - ——
(<] |_| IDlgltaI Skhm (Switch, ... J . GEeaE e J |3
I o [pigial Skohm (Switch, ..} 7] ijode S(E.eps O cow & stop © cw
iai i M =5
bz i] Digital SkChm {Switch, .0 = [l_
I I =l " o7+08 512 J 5
— Counter Inpuks —State of part:
o
cr r Inkerface: | LUSB/EM? #00000000 (ROBO T
2zl |u I
—Master | Extension Madule:
L] o
5| - Cw fz £ Ce Oz
ca " [o r 1L £z Cs5 €37

It shows the inputs and outputs available on the Interface. The green bar in the lower left of the
window displays the connection status of the PC to the Interface:

e Connection: Running confirms correct connection to the Interface

e Connection: Stopped indicates that the connection has not been correctly set up and the
PC was unable to establish a connection to the Interface. In this case, the bar will appear red.

To be able to change the Interface or connection settings, you must close the Test window (with
the X in the upper right) and select another port or another Interface type as previously described,
via the COM/USB button in the toolbar.

If you have been able to set up the connection between PC and Interface as described and the
green bar appears, you will be relieved to know you can skip the next section.

If not, perhaps the tips in the next section can help you out.

2.3 Wrong connection: no connection to the Interface!?

If you get the message Stopped with your interface despite having correctly set the port (see
above), you should check the following points. For this purpose, you may need to get advice from
a computer expert:

e Power supply:
Does the Interface have an appropriate power supply? If you are using disposable or re-
chargeable batteries as power supply, the possibility arises that these are flat and no longer

fischertechnik==x

ROBOPro

supply sufficient voltage. If the battery voltage falls below 6 V, the ROBO TX Controller's pro-
cessor may stop working. In this case the display will stop showing any information. If the
voltage is too low, you must replace or, where appropriate, recharge the battery, or, if pos-
sible, test the Interface with a mains power supply.

e Has the USB driver been installed correctly?

You can find this out by checking in the Device Manager in the Windows Control
Panel whether the entry fischertechnik USB ROBO TX Controller appears under connections
(COM and LPT) and functions properly. Should this entry not appear, install the USB driver
again. If an error appears, uninstall the driver (click on the respective entry with your right
mouse but- ton) and install it once again. If the USB driver is not installed automatically, you
can manually install it via the device manager. You can find the drivers for the different
devices in the ROBOPro folder (default: C:\Program Files (x86)\ROBOPro\USB driver install).
Additional help on the latest USB drivers (select the interface TXT, TX, ROBO, LT) and how
to install them manually is available at: www.fischertechnik.de/en/service/downloads/robotics

e s there a conflict with another device driver on the same port (e.g. a modem)? This driver
may need to be deactivated (see Windows or device handbooks).

e If you still can’t establish a connection to the Interface, then probably either the Interface or
the connection cable is faulty. In this case, you should consult fischertechnik Service (Ad-
dress: see menu: “?” / Information about).

2.4 Is everything working - the Interface test

Once the connection has been correctly set up, you can use the Interface test to test the ROBO TX
Controller and the models connected to it. The test window displays the various inputs and outputs
of the Controller:

e Universal inputs [1—I8
[1—I8 are the universal inputs of the ROBOTICS TXT Controller and the ROBO TX Controller.
This is where different types of sensors can be connected. There are digital and analog sen-
sors. You set the universal inputs depending on the type of sensor you would like to connect.

o Digital sensors can only assume the states 0 and 1, or
Yes and No. By default, both universal inputs are set to
the input type Digital 5kOhm. Switches (mini pushbutton-

switches), as well as phototransistors (light sensors) or
arfo reed-svyitphe;; (magnetic sensors), can be connected to

) ol e these digtal inputs.

o —— |Utrasonic ’ You can check the functioning of these inputs by con-

necting a mini-sensor (item number 37783) to the
Interface, e.g. to 11 (use contacts 1 and 3 on the switch). As soon as you press the button, a
check-mark appears in the display of 11. If you have connected the switch the other way
around (contacts 1 and 2), the check-mark will appear straight away and disappear when you
press the button.

e The setting Digital 10V is used for the infrared trail sensor.

& Interface test

Inputs | Gutputs |Info |

Inputs
unl |o Digital Skohm {Switch, .. 0{ ~

e The setting Analog 10V can be used for the color sensor or to measure voltages between 0
and 10V such as the supply voltage of the battery pack. The voltage is displayed in mV (milli-
volt).

fischertechnik==x

https://www.fischertechnik.de/en/service/downloads/robotics

ROBOPro

Analog 5kOhm is used for the NTC resistor to measure temperatures and for the photoresis-
tor to measure light. Here the reading is displayed in Ohm (Q = electrical resistance).

The setting Distance is used for the ultrasound distance sensor (for the ROBOTICS TXT
Controller and the ROBO TX Controller only the version TX of the distance sensor with 3 pin
connection cable, item number 133009, can be used).

Counter inputs C1—C4

These inputs allow you to count fast pulses with frequencies of up to 1000 pulses per second.
You can also use them as digital inputs for buttons (not suitable for the trail ~ sensor). If you
connect a button to this input, every push of the button (=pulse) will increase the value of the
counter by 1. This allows you, for example, to let a robot travel a specific distance.

Motor outputs M1—M4

M1 — M4 are the outputs from the Interface. This is where what are called actuators are con-
nected. These can be, e.g., motors, electromagnets or lamps. The 4 motor outputs can be
controlled in speed and in direction. Speed is controlled using the slide control. You can
choose between a coarse resolution with 8 different steps of speed or a fine resolution with
512 steps. The program elements in levels 1 and 2 only use the coarse resolution, but
starting with level 3, there are elements which allow you to use the fine resolution. The speed
is displayed next to the slider control as a number. If you would like to test an output, you
connect a motor to an output, e.g. M1.

Lamp outputs 01—08

Each motor output can alternatively be used as a pair of individual outputs. These can be
used to control not only lamps, but also motors which only need to move in one direction (e.g.
for a conveyor belt). If you would like to test one of these outputs, you connect one lamp con-
tact to the output, e.g. O1. You connect the other lamp contact with one of the ground
sockets (L) of the interface.

Extension modules

Additional interfaces of the same type or expansion modules (extensions) can be connected
to the different interfaces (see the user manual related to the device). These buttons allow
you to select which of the connected devices you would like to access with the test window.

fischertechnike=x

ROBOPro

3 Level 1: Your first control program

After testing the hardware, that is the Interface and the switches and motors connected to it, in
Chapter 1, we'll now get down to programming. But what does “programming” actually mean? Well,
just imagine that, for example, a robot is connected to our Interface. But this robot is so stupid that it
can't do anything on its own. Luckily, we're a bit smarter than that. We can tell the robot exactly
what to do. How? Well, what happened in the last chapter when we used the mouse button to set
the motor output M1 on “left’? Right, we switched the motor on. If, for example, this motor were to
drive the gripping claw of our robot, we would have done nothing else than to say to the robot:
“Grip the object!” But now we don’'t want to initiate every step by hand; rather the robot should do
this automatically. To achieve this, we must store the individual steps to be carried out, so that the
robot can work through them one after another, i.e., we must create a program, which will control
the robot on our behalf. Logically enough, the technical term for this is a control program.

3.1 Creating a new program

The ROBO Pro software gives us a great tool to design these control programs and to test them
with the aid of a connected Interface. Don't worry: we're not about to program the robot straight
away. We shall content ourselves initially with simple control tasks. To do this we must create a
new program. In the toolbar you will find the entry “New”. If you left-click on it with your mouse,
a new, empty program is created.

lalx
bl b Dree en Lol ot e Zlaixi

Dlglainclealnzm

Envin |comins
Wairazan |

) [| I | |
| Conried| Contirge | Pwss | S Eoounout | Boonin

o

I e e]

XY

i | o

Now you see a large white drawing surface, in which you will enter your first program. If you — see
two stacked windows in the left margin, please switch to Level 1: Beginners in the Level menu.

fischertechnik==x

New

ROBOPro

3.2 The elements of a control program

Now we can set about creating our first control program. We shall do this
on the basis of a concrete example:

Functional description:

Imagine a garage door that can be opened automatically. Maybe you've even
got one at home! You arrive at the garage in your car and, with the push of a
button on the transmitter, the door, driven by a motor, is opened. The motor
must keep running until the garage door is completely opened.

Words are a rather cumbersome and not very graphic way to describe a control
program. So what we call flow charts are used to represent the sequence of
actions to be performed and the conditions that need to be fulfilled for these
actions. In the case of our control system, the condition for the action “switching
on motor” is that the button be pressed. It is easy to read one of these flow
charts: just follow the arrows step-by-step! These show exactly how the control
system works — the individual steps can only be carried out in the order given
by the arrows, never in any other way. Otherwise it wouldn't be worth going to
all the trouble, would it?

Door open?
Pl e

%

End

Using our ROBO Pro software, we can now draw precisely this flow chart and in so
doing create the control program for the connected hardware (Interface, motors,
switches, etc.). The software does the rest, which, as it happens, is just the way it
is with large industrial applications too! So we can concentrate fully on the creation
of the flow chart.

You put the flow chart together from program elements. Another new concept?
Don’t worry! In ROBO Pro the individual elements that are put together to form a
flow chart are called program elements. The action “switch on motor’ means just
that: the Interface should actually switch on the motor that is connected to it! You
will find the available program elements in the element window on the left-hand
side.

4488

_\
om
=)

3.3 Inserting, moving and modifying program elements

‘

Now it's a matter of creating a flow chart for our garage door control system from
the program elements contained in the element window. All available program elements can be
fetched from the element window and inserted in the program window.

Inserting program elements.

You move the mouse onto the symbol for the desired program element and left-
click on it once. Then you move the mouse into the program window (that’s the
large white area) and click once again. You can also drag the program element

into the Program window while holding down the mouse button. A program

always begins with a Start element. The Start element is the rounded element with the little green
GO man. It would be best to try this out straight away with this program element: Left-click once on
the Start element in the element window, move the mouse up into the program window and once
there left-click once more.

fischertechnike=x

ROBOPro

The next element in the program flow chart queries an input and then
branches to one path or another depending on its state. In the element
window, click on the element depicted right and then move the mouse
below the previously inserted Start element. If the upper input of the
Branch element is one or two grid points below the exit of the Start
element, a connecting line will appear in the program window. If you
left-click again, the Branch element is inserted and automatically con-
nected with the Start element.

Moving program elements and groups

A program element can be moved to the desired position after insertion while holding down the left
mouse button. If you want to move several elements as a group, you can start by drawing a frame
around the elements while holding down the left mouse button. To do this you have to left-click in
an empty zone, keep the button pressed and use the mouse to draw a rectangle containing the
desired elements. The elements in the rectangle are now displayed with a red border. If you now
move one of the red elements with the left mouse button, all the red elements are moved. You can
also mark individual elements red by left clicking on them while holding down the shift key (i.e. the
upper/lower case key). If you left click in an empty zone, all the red-marked elements will be dis-
played normally again.

Copying program elements and groups

Copying program elements and groups can be done in two ways. You can proceed exactly as for
moving, except that you press the CTRL key on the keyboard before moving the elements. In this
way the elements are not moved, but copied. However, with this function you can only copy ele-
ments within a program. If you want to copy elements from one program to another, you can use
the Windows clipboard. First select some elements, as described in the previous section in the
case of moving elements. If you now hit CTRL+C on the keyboard or click on Copy on the Edit
menu, all the selected elements will be copied onto the Windows clipboard. Now you can change
over to another program and re-insert the elements there with CTRL+V or Edit / Paste. Once
elements are copied, you can also paste them in several times. If you want to move elements from
one program to another, you can use CTRL+X or Edit / Cut function at the beginning instead of
CTRL+C or Edit/ Copy.

Deleting elements and Undo function

It is quite simple to delete elements. You can delete all the elements marked in red (see previous
section) by pressing the “delete” key (Del) on the keyboard. You can also delete individual ele-
ments with the Delete function. To do this, first click on the button in the toolbar like the one
illustrated and then on the element you want to delete. Try it out now. Then you can redraw the
deleted element. But you can also retrieve the deleted element using the Undo function in the Edit
menu. By using this menu item you can undo any changes to the program.

fischertechnik==x

i

Delete

ROBOPro

Editing program element properties

If you right click on a program element in the program x|

window, there will appear a dialog window, in which
you can change the element’s properties. The Proper-
ties window for a Branch element is illustrated on the
right.

Input mode: ——
©CID COMIE | [10v
€20 MEE | | & Skohm

i C3D { M3E
C4D MIE
Buttons 11 to I8 allow you to enter which of the ~ intefare Extension
Interface’s inputs is to be queried. The inputs JoFs &l
C1D-C4D correspond to counter inputs if yoU — cocar type:
use them as digital inputs. We will deal with the | Err—— =

inputs M1E-M4E later. E—.
[~ Swap ranches
The addltlona| InputS C1 D'C4D and M 1 E'M4E ¥ Leave 1j0 branches as they are

are covered in Section 8.1.3 - Digital Branch (" Swap 10 branches

The selection Interface / Extension is not oK B
explained until Chapter 7 - Controlling several

Interfaces

Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed-contact
switches. Selecting the sensor automatically sets the required input type for the universal in-
puts 11-18 of the ROBOTICS TXT Controller or the ROBO TX Controller.

Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch element. Normally the 1 exit is below and the 0 exit is on the right. But some-
times it's more practical to have the 1 exit on the right. Press on Interchange 1/0
connections and the 1 and 0 connections will be changed over as soon as you close the
window with OK.

Hint: If you connect a mini-sensor as a “closer”, using connections 1 and 3 of the switch, the
program branches to the “1” branch if the switch is depressed, and otherwise to the “0”
branch.

If you connect a mini-sensor as an “opener”, using connections 1 and 2 of the switch, the
program branches to the “1” branch if the switch is depressed, and otherwise to the “0”

The next element in our garage door control system is a Motor

element. Insert it into the program as you did with the previous
two elements, this time under the Branch element. It is best to place
the element in such a way that that it is automatically connected to

branch.

the element above.

fischertechnike=x

ROBOPro

The Motor element allows you to switch on or off either a motor, or
a lamp or an electromagnet. Again, you open the Properties
window for the Motor element by right-clicking on the element.

5|
Mator output - Image:
* Motor
" Lamp
" Solenid valve

e You can choose which of the Interface’s outputs to control
by means of buttons M1 to M4.

" Electiomagret
" Buzzer

Interface / Extension

e Under Image you can choose an image to represent the et) s
fischertechnik component connected to the output. speed (1.8 c o
. . . . [8 o
o We will deal with the selection Interface / Extension when
we get to Chapter 7 - Controlling several Interfaces ok | ceen |

e Under Action you can select how the output is to be affected. You can start a motor with
direction left (counterclockwise) or right (clockwise) or stop it. You can switch a lamp on or off.

e Under Speed/Intensity you can set the speed at which a motor is to operate, or how brightly
a lamp should glow. Possible values are 1 to8.

For our flow chart we need the command Motor M1 left with speed 8.

3.4 Linking program elements

Now that you know how to insert elements into a control program, we can get on with the job of
completing our control program. Think back to the functional description of the garage door control
system: is there still something missing? Right: we may have turned the motor on by pushing the
button, but once the door is opened, the motor must be automatically switched off again! In prac-
tice, this is done with the so-called “end switch”. This is a sensor fitted to the garage door in such a
way that it is operated the moment the motor has fully opened the door. As in the case of switch-
ing on the motor, this signal can be used to switch it off again. To query the end switch we can use
the Branch element again.

So insert another Branch element into the program, one which will check the
end switch on input 12. Don't forget to left-click on the element and to set the
input to 12. As soon as the garage door is open and the end switch has been
pressed, the motor should stop again. This will be achieved using a
Motor element. Start with the same element we used to switch on the motor.
If you right-click on the element, you can change the function of the element to
Stop motor. The program is finished off with an End element. Your program
should now look almost like the illustration on the right. If you have placed the
elements under one another with a separation of one or two grid points, most
of the entries and exits will be connected with program flow arrows. But the
No (N) exit of the two Branch elements is not yet connected. As long as the
switch on input [1 has not been pressed, the program should go back and
query the switch again. To draw this line, click with the mouse successively
on the places shown in the diagram below.

fischertechnik==x

ROBOPro

M1 M1 M1 M1
V=3 V=g w3 . w=g

Hint: It a line should ever not correctly joined to a connection or another line, this will be indi-
cated by a green rectangle at the point of the arrow. In this case you have to create
the connection by shifting the line or by deleting it and drawing it again. Otherwise the
program flow will not work at this point.

Deleting program flow lines

Deleting lines works exactly like deleting program elements. Simply left-click on the line, so that it
gets marked in red. Now click on the delete (Del) key on the keyboard to delete the line. You can
also select several lines, if you hold down the shift key (that's the key for shifting between upper
and lower case) and then left-click on the lines in succession. Apart from this, you can also mark
several lines by drawing a frame around them. Now you can delete all the red-marked lines at
once by pressing the Del key.

3.5 Testing your first control program

To test our first control program, you should build a little model. To do this, it is enough to connect
a switch to |1 and to 12 on the Interface, as well as a motorto M1.

Note: Connecting the Interface to the PC and establishing Interface settings has already
been covered in the previous chapter, which you can refer back to for details.

Before testing the program, you should save the program file on the hard drive of your computer.
Click on the command Save as on the File menu. The following dialog window will then appear.

fischertechnike=x

ROBOPro

Under “Save in”, choose the direc- =

tory in which you want to save the Savei: |3 Sarve Pogars 407 ®

Robo Mabile Set

TestOO Mokar skart stap.rpp
TestOl Maotar skart skop loop.rpp
Test0z2 Switch Motor on off.rpp

file. Under “Filename”, enter a
name not yet in use, e.g. GARAGE
DOOR and confirm by left-clicking
on “Save”.

06
0k
I

ty Documents

=
My Computer
.
4 Fil name unnamet = [|
To test the program, Saveastyps |.pp fies rpp) = Eancel
)|

o push the start button
(shown left) in the
Start toolbar. First, ROBO Pro will test whether all the program elements are properly con-

nected. Should an element not be correctly connected or something else not be in order, it is

marked in red, and an error message is displayed describing what is not right. If, for example, you
have forgotten to connect the No (N) exit of a program branch, it will ook like this:

B Program eror [%]

@ The ‘W' program flavs output of the branch is not connected

If you have received an error message, you must first of all correct the reported error. If you do not,
the program will not be started.

Note: You will find a full explanation of this mode of operation and of “Download Operation” in
Chapter 3.7, on page 24.

fischertechnik

ROBOPro

The first Branch element will be marked in red. This shows that the program is
waiting at this element for an event, namely the pressing of the button on I1,
which is supposed to open the garage door. As long as the switch on input [1
has not been pressed, the program takes the No (N) alternative of the branch
and goes from there back to the beginning of the branch again. Now press the
switch connected to input 11 of the Interface. This fulfils the condition for
proceeding, and the motor is switched on. In the next step, the program waits
for the end switch on input 12 to be pressed. As soon as you operate the end
switch on 12, the program branches to the second Motor element and switches
the motor off again. Finally the program arrives at the program end. A mes-
sage will appear saying that the program has been terminated.

Did everything work? Congratulations! That means you've created and tested
your first control program. If it doesn’t work properly—don't give up, just check
through everything carefully again; there must be a mistake hidden in there
somewhere. Every programmer makes mistakes, and making mistakes is the
best way to learn. So keep your chin up!

3.6 Other program elements

If you have tried your first control program on a real model garage door, the door will now be open.
How can we close it again? Of course we can start the motor again by pushing a button! But we
want to try another solution, and learn about a new program element in the process. To do this,
you start by saving the program under a new name (we will need the current flow chart again later).
Use the menu item Save as ... in the File menu to do this, entering an as yet unused filename.

3.6.1 Time delay

Before we can extend the flow chart, you have to delete the connection between |
“switch off motor” and “Program end” and shift the End element down. Now you 1s Z
|

can insert the new program elements between these two elements. The garage
door is to be closed automatically after a period of 10 seconds. To do this you
can use the Time delay program element illustrated right. Within a broad range,
you can set the waiting time as you wish, as usual by right-clicking on the element. Enter the
desired time delay of 10 seconds. To close the garage door, the motor must of course go the other
way, that is, to the right clockwise). The motor is turned off by another end switch on 13.

fischertechnike=x

The finished flow chart should look roughly as pre-
sented on the right. For the sake of presentation, the
new program elements have been moved to the right.
Once there are no more mistakes in the flow chart, you
can test the extended garage door control system as
usual with the Start button. The motor is switched on
by operating the switch on 11, and switched off again
by operating I12. This is how the garage door is opened.
Now the Time delay program element has a red border
for 10 seconds, that is the delay time we set. Then the
motor is switched on to turning the other direction until
the switch on 13 is operated. You should also try
changing the delay time.

3.6.2 Wait for input

Alongside the Time delay
element there are another
two elements that wait for
something before allowing

ROBOPro

the program to proceed. The Wait for Input element, depicted left,
waits until one of the Interface’s inputs is in a particular state of has changed in a particular way.

There are 5 variants of this element.

1 1 1 1 1
Symbol /1nge/|/0Ongd/|/Fngd/ |/3Ing/ |/Fxngd/
T T T I T
Wait for Input=1 Input=0 Change 0-1 Change 1-0 Any change
(closed) (open) (open to (closed to (1-0 or 0-1)
closed) open)
Same
function ‘ ‘
ang |8 <o < <o
Branch
alone

A combination of Branch elements could be used instead, but the Wait for Input element makes

things simpler and easier to understand.

3.6.3 Pulse counter

Many fischertechnik model robots also use pulse wheels. These gear

/4o 11 88/

wheels operate a switch four times for every revolution. With these
pulse wheels you can turn a motor on for a precisely defined number

of revolutions rather than for a given time. To do this, you need to

fischertechnik==x

count the number of pulses at an input of the Interface. For this pur-
pose there is the Pulse counter element, depicted left, which waits for a user-definable number of
pulses. In the case of this element, too, you can set whether any alterations or only 0-1 or only 1-0

O

Start

1l

Pause

1

Step

O

A
Download

ROBOPro

changes are regarded as pulses. With pulse wheels, one normally waits for changes in either
direction, so that a resolution of 8 steps per revolution is obtained with 4 gear teeth.

3.6.4 Counter loop

With the Counter Loop element you
can very easily have a specific part i
of the program executed several
times. The program illustrated, for
example, tums a lamp on M1 on /=1 *1
and off again 10 times. The
Counter Loop element has a built-in
counter. If the counter loop is enter-

ed via the =1 entry, the counter is set to 1. If the counter loop is

entered via the +1 entry, 1 is added to the counter. According
to whether the counter is greater than a value you have
prescribed, the counter loop branches to the Yes (Y) or No

(N) exit. So the Yes exit is used when the loop has been

traversed as many times as you specified in the counter value.

If further passes through the loop are needed, on the other

hand, the counter loop branches to the No exit. As in the case

of the Branch element, you can also swap the Yes and No
exits through the property window.

3.7 Online and download operation—what’s the difference?

So far we have tested our control programs in what is called online operation. In this way you
were able to follow the progress of the program on the screen, because the currently active ele-
ment was marked in red on the screen. You use online operation to understand programs or to
look for errors in programs.

In online operation you can also stop the program and continue it again by pressing the Pause
button. This is very practical if you want to investigate something about your model without stop-
ping the program altogether. Also, if you are trying to understand the way a program runs, the
Pause function can be very helpful.

With the Step button, you can execute the program in individual steps, element by element. Every
time you press the Step button, the program goes to the next program element. If you execute a
Time Delay or Wait for element, it can of course take a while for the program to get to the next
element.

For your interface you can also use download operation instead of online operation. In online
operation programs are executed by your computer. In this mode, it sends control commands such
as “switch on motor” to the Interface. For this, the Interface needs to be connected to the computer
for as long as the program is running. On the other hand, in download operation the program is
executed by the Interface itself. Your computer stores the program in the memory of the interface.
As soon as this has been done, the connection between the computer and the Interface can be
broken. Now the Interface can execute the control program independently of the computer. Down-
load operation is important for example in programming mobile robots, for which a connecting
cable between PC and robot would be very cumbersome. Even so, control programs should initial-
ly be tested in online operation, as possible errors are more easily found here. Once fully tested,

fischertechnike=x

the program can be downloaded onto the interface. The problematic USB cable can be replaced
by a Bluetooth connection TX or TXT Controller or Wi-Fi (TXT Controller). In that way the model

ROBOPro

has unrestricted mobility even in online operation (see the manual of the respective interface).

But online operation also has advantages compared with download operation. In comparison with
the Interface, a computer has much more working memory, and can calculate much faster. This is
an advantage with large programs. Also, during online operation a ROBOTICS TXT Controller, a

ROBO TX Controller and a ROBO Interface can be controlled simultaneously from a program.

An overview of the two modes of operation

Mode Advantage

Disadvantage

Online Program execution can be followed on
screen

Execution, even of large programs, is very
fast

Simultaneous control of different interfaces
is possible

The earlier Intelligent Interface is support-
ed

Panels can be used

The program can be stopped and contin-
ued

Computer and Interface must remain
connected

Download | Computer and Interface can be separated
after download

The earlier Intelligent Interface is not
supported

Program execution cannot be fol-
lowed on screen

Using download mode

You can transfer the garage door control system to the
interface by means of the Download button. First the
dialog window on the left is displayed. The interfaces
have several program storage areas, a RAM
(Random Access Memory) area and a Flash memory
area. A program in RAM is lost as soon as you
disconnect the Interface from the power supply or the
battery pack is discharged. A program stored in Flash
memory, on the other hand, will remain stored in the
Interface, even without power, for years. Of course you
can nevertheless overwrite programs in Flash memory at
any time. Download to RAM, however, is distinctly faster,
and is therefore recommended for testing purposes.

== Download ed B

~Memory area

* RAM (contents lost when powered down);

£~ Flash (retained through power down)

[Skark program
¥ Start program after download

£~ Stark program using buttan on Interface

oK Cancel

You can store multiple programs, for example multiple behavior modes for a mobile robot, in the
Flash memory. You can select, start and stop the multiple programs by using the display and the

fischertechnik==x

Q

A
Download

ROBOPro

selection keys of the ROBOTICS TXT Controller or the ROBO TX Controller. If the Start program
after download option is active, the program is started immediately after download.

For mobile robots, the option Start program with key on Interface makes more sense. This is
because, if you don’t have a Bluetooth or Wi-Fi interface, you still have to unplug the USB cable
before your program sets the robot in motion. In this case, you start the downloaded program by
using a selection key of respective interface.

The "Autostart" function starts a program automatically as soon as the Interface is supplied with
power. In this way, you can for example you can supply the Interface with power via a mains
adapter with a time switch, and start the program every day at the same time. Then you don’t have
to either leave the Interface permanently switched on or start the program with the selection key
every time you switch it on.

Note:

You can also find a comprehensive description of the functions of the ROBOTICS TXT Con-
troller in the accompanying operating manual.

3.8 Tips and Tricks

Altering connection lines

If you shift an element, ROBO Pro will try to adjust the connecting lines in a reasonable way.
Should you not like an adjusted line, you can easily change the connecting lines by left-clicking on
the line and moving it while holding the key down. According to where the mouse is placed on the
line, a corner or an edge of the line is moved. This is displayed by different mouse-cursors:

If the mouse is positioned over a vertical connection line, you can move the whole vertical
@ line while holding down the left mouse key.

If the mouse is positioned over a horizontal connection line, you can move the
whole horizontal line while holding down the left mouse key.

/@ If the mouse is positioned over an oblique connection line, a new point is inserted into
4 the connecting line when you left-click. You have to hold the left mouse key down, not
releasing it until the mouse is positioned where the new point is to be placed.

If the mouse is positioned near an end point or a comner of a connecting line, you can

move this point while holding down the left mouse key. You can only move a connected

line endpoint to another suitable program element connection. In this case the endpoint of
the connecting line will be linked to this connecting line. Otherwise, the point will not be moved.

A different approach to connecting lines

Connecting lines can also be created by moving program elements. If you move a program ele-
ment so that its entry is one or two grid points below the exit of another, a connecting line between
the elements is created. This also applies to an exit that is moved over an entry. After that, you

fischertechnike=x

ROBOPro

can move the program element to its final position or draw further links for the remaining entries
and exits.

fischertechnike=x

ROBOPro

4 Level 2: Working with subprograms

Once you have successfully created and tested your first control program, you are ready for ROBO
Pro Level 2. Now choose the entry Level 2: subprograms in the Level menu. You are sure to notice
the difference straight away: The element window has disappeared, and in its place you now have
two stacked windows on the left-hand edge.

Dllel] %l0mX 0le|emim & lnjn]]

Proyan dewerts

A

But don’t worry! The element window is still there, only it's now empty. In Level 2 there are more
program elements, so that you would lose track of them if they were all packed into one window.
For that reason, from Level 2 onwards, all the elements are classified into element groups. The
elements are organized into groups in a similar way to how files on your computer’s hard disk are
organized into folders. If you select a group in the upper window on the left-hand side, all the
elements in this group appear in the lower window. You will find the elements from Level 1 in the
group Program elements / basic elements. Since the element window is now only half as big, you
have to use the scroll bar on the left of the element window to display the lower elements.

So, now let's get down to the real topic: subprograms! Of course the flow charts we have designed
so far have not been on such a large scale that we could not take them all in at once, but surely
you can imagine that this could very easily happen in the case of larger projects with more com-
plex flow charts. Suddenly your worksheet is full of components, there are connecting lines
everywhere and you have to constantly scroll back and forth on the screen. “Now where was this
or that exit?” In short—minor chaos threatens! What to do? Is there no way to bring some order
into this chaos? Yes there is—it's called subprograms!

fischertechnik=x

ROBOPro

4.1 Your first subprogram

A subprogram is very similar to the programs you're already familiar with. To investigate them
more closely, first you have to create a new program and a new, empty, subprogram within this
program. To do this, press Program New and then the SP New button in the toolbar. A window will
appear, into which you can enter the name of the subprogram and a description of it.

The name should not be too long (8-10 letters max), as

otherwise the subprogram symbol will be very large. Of
course, you can later modify any entries you make here. Mame: [5P1

As soon as you close the “New” subprogram window with |~ D= Pem [y fst subprogrard =
OK, the new subprogram will appear in the subprogram _|L|
A ¥

bar.
oK | Cancel |

M ain program

You can switch between the main program and the sub-
program at any time by clicking on the program name in the subprogram bar. As both programs
are still empty, however, you won't see any difference yet.

We now want to divide the garage door control system (see Section 3.6 - Other program elements)
into subprograms. The program consists of four functional units:

e Wait until button 11 is pressed
e Open door

e Wait ten seconds

e Close door

Now we need to separate the opening and closing into two subprograms. Either subprogram can
then be called from the main program with a single reference. The wait for sensor |1 and the 10-
second time delay remain in the main program, as each of them consists of only a single element
anyway. You have just established a new program with a subprogram named Subprogram 1.
However, Open and Shut would be better names for these two subprograms. You can rename the
already created subprogram by first selecting Subprogram 1 via the subprogram bar, if it is not
already selected.

fischertechnik==x

[]

ew

]

SP New

ROBOPro

Then switch via the function bar to the Properties
window for the subprogram by clicking on Proper-
ties. Here you can change the name of SP 1 to
Open. Most of the other fields can only be altered Name: | UP1
in the Advanced or even Expert levels. The item
Symbol creation will be explained later on.

Symbal generation: Default placement:
If you click on Description on the function bar, you {“‘ putamati W F’ﬁ D —‘

Main program UP1 I

Functionl Symbol' Panel | T Display Properties | Description

rInkerface ;

Group: I

) L " Manual (" Static
can change the previously entered description,
although “My first subprogram” remains an accu- Wirimum number of processes: B
rate description' Additional processes: ID

In the function bar, click on Function now, so that Min. memory per pracess (dowrload): [1096
you will be able to program the function of the e W =l
subprogram. Now you will see the program

window again, in which you inserted program

elements in the previous chapter for your first ROBO Pro program. Make sure that you have se-
lected the subprogram Open in the subprogram bar.

Main program ~ Open

Are you ready to write your first subprogram? Well let’s go! But just how does a subprogram start?
Good question! You have always begun a main program with the start element. A subprogram
begins with a similar element the Subprogram Entry. The element has this name because it is
through this element that program control passes from the main program into the subprogram. You
can't use a Start element here, because of course no new process is being started.

Start element Starts a new, independent process.

Subprogram entry | Here program control is handed over from the main
program to the subprogram

You will find the Subprogram entry in the element group window [~ Program elements
under Subprogram 1/0. Now place the Subprogram entry near the i

top of the program window for the Open subprogram. You may
also give a Subprogram Entry element a different name than
Entry, but this will only be necessary if at some later time you
write a subprogram with multiple entries.

i Basic elements
% = Libprogram 140

The subprogram now runs identically to the part of the main program which does the opening. You
switch on the motor M1 in the left-rotating (anticlockwise) direction, wait until the sensor on input 12
is closed and then switch the motor off again.

To close off the program you use a Subprogram Exit. The difference between the Subprogram Exit
and the Stop element is the same as between the Subprogram Entry and the process Start.

fischertechnike=x

ROBOPro

Stop element

Stops program execution of an independent process

Ex,
Exit

Subprogram Exit

Here program control is handed back from the
subprogram to the main program

The completed subprogram should now look something like this:

[Program elements Main program OPen |

- Basic elements

ubprogram i FUnetion |Sy'mbu|| Panel | Tx Display | Properties | Cescription |

“.-Send, receive
Drawing
[Library
User library
[Loaded programs

Make sure you have actually entered the subpro-
gram under Open, and not under Main program. Now
switch in the subprogram bar from Open back to
Main program. Now you will see the main pro-
gram window, which, as before, willbe empty. As
usual, insert a Start element (not a Subprogram
entry!) into the main program. Querying the switch on
11, which is supposed to open the garage door, you
will also do as before in the main program.

Now you can insert your new subprogram, like
an ordinary program element, into your main
program (or into another subprogram). You will find
it in the element group window under Loaded
programs and the filename of your program. If you
have not yet saved your file, it has the name
unnamed1. If you have loaded other program files,

you can also select subprograms belonging to other files in the selection window. This way, it is very

easy to use subprograms from another file.

fischertechnik==x

=} Prograrn elements | Main program |ﬂpen |

Basic elements

i Send, receive

Drawing

- Library

User library

[=l- Loaded programs
i Garagentorl

K —
Main program

Subprogram 1fi T dnetien |Symhnl | Panel | T D\sp\ayl Pt

SP New

ROBOPro

In the element group Loaded programs / unnamed1 you will find two green subprogram symbols.
The first, with the name Main program, is the symbol for the main program. This is used rather
infrequently as a subprogram, that even that is possible, for example if you are controllinga whole
machine park, and you have previously developed the control systems for the individual machines
as main programs. The second symbol, with the name Open, is the symbol for your new subpro-
gram. Open is the name you entered under Properties. Now insert the subprogram symbol, in the
same way as you're used to doing it with ordinary program elements, into your main program. It's
as easy as that!

You can close your main program right now with a stop element and try it out, if you like. The door
will be able to be opened by pressing the button on |1, but we haven't programmed the closing part
yet. To do that, you write another subprogram. Press the SP New button on the toolbar and enter
the name Shut in the "New" subprogram window. You are not obliged to enter a description, but it
wouldn’t hurt, so you won't forget later what the subprogram is meant todo.

Now enter the program for shutting the garage door in the program window for the subprogram
Shut. Once again, you start with the Subprogram entry. First the motor M1 should turn to the right
(clockwise). As soon as the end switch on 13 is closed, the motor M1 should stop. Once again the
subprogram is closed off with a Subprogram exit.

Now use the subprogram bar to switch back to the main program. If you previously closed off the
main program with a Stop element so as to try it out, you must delete the Stop element again. After
being opened, the garage door should remain open for 10 seconds before being closed again.
After a 10-second Time Delay, you insert the Shut subprogram symbol from the element group
Loaded programs / unnamed1. The main program and the two subprograms should look some-
thing like this:

Main program

fischertechnike=x

ROBOPro

The program starts at the Start element in the main program. Then it waits until sensor 11 is \\ I/
depressed. Incidentally, you could also do this using the Wait for Input element (see Section 8.1.9

Wait for input). After the switch 11 has been pressed, the main program calls the sub- program

Open. This switches program control to the Subprogram Entry for the subprogram Open. The
subprogram Open opens the garage door and then reaches its Subprogram exit. At this point
program control returns to the main program. After the subprogram finishes the main program

waits for 10 seconds. Then program execution switches to the subprogram Shut, which shuts the

garage door again. After control returns from the subprogram "Shut", the main program comes to a

"Stop" element, which terminates the program.

4.2 The subprogram library

It is very easy to copy subprograms from one file to another: you load both = Frogram elements
files and insert a subprogram from one file into another using the element - Basic elements
group Loaded programs. For frequently used subprograms, however, the D;’;jli';pmg'am” 0
process is even simpler, through use of the Library. ROBO Pro contains a . L,b,a,y

library of ready-made subprograms that you can easily re-use. As well as
that, you can create your own library, in which you can store your frequently

used subprograms.

- Uszer library
- Loaded programs

4.2.1 Using the Library

The Library is initially divided into several groups. You will find subprograms you can use for
models from specific construction kits. In the Advanced group you will find subprograms you can
use for all possible models. But most of these subprograms in the "Advanced" group require
techniques from Level 3, which are not explained until the next chapter.

If you point to one of the subprogram symbols

with the mouse, a short description is displayed.

|f y0|J insert a Subprogram into yOUr program Function | Symboll Panel |T>(Displayl Froperties Description
: : it _ Turns the robot 90° clockwise

you can display a detailed description by select The robot furms around an the spor.

ing the subprogram in the subprogram bar and This pragram raquires pulse switches.
then clicking on Description in the function bar.

Main program cw 90 |

Caution: If you insert a program from the Library, in some cases further subprograms that are
used by this subprogram will also be inserted. You can remove all these subprograms again
by selecting the Undo function on the Edit menu.

4.2.2 Using your own library

After you've been working away with ROBO Pro for a while, you are sure to have some subpro-
grams that you use more frequently than others. To avoid having to look for and load the relevant
file every time, you can also set up your own subprogram library, which functions in exactly the
same way as the pre-defined library. Your own library consists of one or more ROBO Pro files all
stored in one folder. Each file in this folder will be represented by its own group in the group selec-
tion display.

You can specify which folder you'd like to store your own library in the File menu under Own
library directory. The default directory for your own library is C:\Programs\ROBOPro\Own Library.

fischertechnik==x

ROBOPro

If you have your own user directory on your computer, it is a good idea to create your own folder
there and use this to store your library.

Tip: Initially you can specify, under Own library directory, the folder in which you also store
your ROBO Pro programs. That way you will have rapid access to all subprograms in all files
in your working directory.

Organizing your own library

ROBO Pro has no special functions to alter a library. But the procedure is quite simple. If you
would like to add subprograms to a library group or remove them from one, you must first load the
corresponding file. You will find this file in the directory which you have established as your "Own"
library directory. Now you can, for example, load a second file and drag a subprogram from this
from the "Loaded" programs group into the main program of the library. In a library, the main pro-
gram is not a real program, but rather just a collection of all the subprograms in the library. In the
case of libraries, the main program itself is not displayed in the element window. Of course you can
also delete subprograms from a library or modify subprograms there.

If you have modified a library file and saved it, then you must select the menu item Update own
library in the File menu. This will update the file list in the group window.

4.3 Editing subprogram symbols

As you saw in the previous section, ROBO Pro automati-
cally generates a subprogram symbol for your
subprograms. But you can also draw your own symbols,
which give a better idea of what your subprograms do. To Symbol aeneration: o et
do this, you must switch from automatic to manual sym- %% —‘ {r‘ Oy T
bols in the subprogram’s Properties window. Next you can g Co

switch from Properties to Symbol in the function bar and M e of processes:

Function | Symbol | Panel | Tx Display Froperties | Description

Name: | close rInterface

Group: |

edit the subprogram symbol there. You will find drawing | sddeenslwocesses: |—o
functions in the element group window under Draw. Win, memoey per pracess (downioad) [A098

o " in. memary per process (online): 65536
Under Draw / Shapes you will find all ey L

the usual basic graphic elements such

?2::393 as rectangle, circle, ellipse, polygons, etc. Under Draw / Text you will find text
Line calor objects in various font sizes. In the other groups under Draw you will find func-
Line width tions to alter the color and similar properties of selected elements. Precise
Lib{;l' eolar details of how to use the drawing functions are given in Chapter 10 - Drawing
- User lbrany functions on page 125. Also observe the functions in the main menu under

- Loaded programs Draw.

I Program elements

You can also move the connections of the subprogram, but you can't delete the connections or
add new ones. In the subprogram symbol there is always one connection for each subprogram
entry or exit. The connection elements are generated automatically, even if you have switched to
manual symbol generation.

fischertechnike=x

ROBOPro

As soon as you leave the symbol-editing window, all calls to the subpro- .
gram in the main program or in other subprograms will be modified E; a
accordingly. Please take note that, if you have moved the connections of a (gl

; . T . ose
subprogram, this can cause a little confusion with subprogram calls, if the Ex
connections were already connected. The endpoints of the connecting lines |
may in some circumstances no longer occur at the right connection, which
will be shown by a cross at the endpoint of the line and at the connection (see diagram). As a rule,
it is generally sufficient to left-click anywhere on the connecting line. The line will then be automati-
cally re-aligned. But it can happen in the case of subprograms with a lot of links that you will have
to edit the line further.

44 Tango

So far, you only became acquainted with rather simple programs and maybe you are
eagerly waiting for new program elements and possibilities. But before we deal with variables
and still more difficult things in the next chapter, let us first see everything what can be done with
the pro- gram elements in the level 2. How would it be, for example, if would provide
tangoing to your mobile robot? For the Nerds among you: Tango is danced to music in the 2/4
measure. The basic step includes 8 steps in 3 measures. For the gentlemen, the step sequence is
as follows:

e One slow step forward with the left foot (1/4 measure)
o One slow step forward with the right foot (1/4 measure)

e Now comes the continuous 4/8 measure “swing step®. Thereby you move the feet a little to
not at all, but only displace your weight. At first, you displace your weight by 1/8 measure on
the left back foot, then by 1/8 on the right fore foot and then again by 1/8 on the left back foot.
For finishing the swing step, you take a break of 1/8 measure.

e Three quick steps follow: First, make a small step backwards with the right foot, so that it lies
again near the left foot. Then you make a step aside with the left foot and, in the end, you
place again the right foot near the left foot. These three steps also last 1/8 measure each
and they will be finished again with a 1/8 measure break.

For the lady, the step sequence is symmetrical, that means left and right, as well as forward and
backward are inverted. The whole repeats till the music comes to the end, you hit on the borders of
the room or it becomes boring to you. In both the last cases, you should ask a dancing master for
advice.

But now again to robotics. Maybe you have a fischertechnik mobile robot building set. The robots
in this set mostly have two driving wheels, with an independent motor each. Guiding is
made by these robots in the same way as for track vehicles. If you turn both driving motors in the
same direction, the robot moves straightforward. If a motor is at rest, the robot runs a curve.

Naturally, with these robots you can also move backward, straightforward and about the curve. If
both the driving engines turn in opposite direction, the robot turns in place. Let us now try to trans-

fischertechnik==x

ROBOPro

late the tango step sequence in wheel turns. One 1/4 measure should thereby last one wheel turn.
We get then:

o Left wheel 1 turn forward (usually motor M2 left).

e Right wheel 1 turn forward (usually motor M1 left).

Now comes the “swing step®. But naturally, our robot cannot move the body without ~ moving the
"feet". Also, the side step in the 3-rd measure is quite difficult for a robot. Therefore we make a
light turn left in the 2-nd measure and move then in the 3-rd measure a small portion straightfor-
ward, for simulating the side step. For the 2-nd measure, it results:

o Left wheel %2 turn backwards (usually motor M2 right).

e Right % turn forwards.

o Left wheel %2 turn backwards.

Both on “left backward” and on “right forward” the robot turns left. In the 3rd measure, we make
now the following:

e Right wheel ¥ turn backwards.

e Straightforward 2 turn forwards.

e Right wheel backward and left wheel forward for Y2turn.

Consequently, first we turn again the robot quite a little to the right, then we move straightforward

(in forward left direction), for simulating the side step to the left, then we turn again the robot
straight.

Now let's try to perform this sequence of steps in ROBO Pro. The form of execution will ~ differ,
depending on whether you are using a TXT or a TX Controller with encoder motors or a model with
pulse switches. The two cases are described separately below:

fischertechnike=x

ROBOPro

4.41 Motor control with pulse switches

At the best, you begin with a subprogram for the single steps. A
subprogram for the first step "Left wheel 1 turn” is shown on the right.
Usually, the driving motor for the left wheel is connected to the
M2 interface output and the appropriate pulse switch to the interface
input 12, whereupon counter-clockwise is forward.

For the first step, you switch the motor M2 counter-clockwise
(full speed) and you wait then 8 pulses at the 12 input. 8 semi
pulses means that you count both the 0 — 1 and 1 — 0 transitions.
You can choose the element in the property window of the pulse
counter. In many models, 8 semi pulses correspond to one wheel turn.
But this can also differ depending on transmission and arrangement of
the pulse switches, for example 16 semi pulses per turn.

As soon as the 8 pulses are entered, you disconnect again the
M2 motor and the subprogram is finished. You may call this sub-
program, for example “Links 1/4".

For the further steps, you still need the following subprograms:

e Right 1/4 (As Left 1/4 with M1 and |1 instead of M2 and 12)

o Left 1/8R (As Left 1/4, but 4 instead of 8 semi pulses and backward, consequently the motor
clockwise)

e Right 1/8 (As Right 1/4, but 4 instead of 8 semipulses).
¢ Right 1/8R (As Rights 1/8, but backword, while motorclockwise)

Naturally, you cannot wait 1/8 pauses over pulse counter, because no wheel m

moves in the pauses. Instead of that, we use a delay time. With the standard
models in the ROBO Mobile Set, 4 semi pulses correspond to about 0.3 seconds.
But depending on translation and motor, it may be also otherwise with your
model. Also provide a subprogram for the 1/8 pause. The subprogram contains, 0.3s X
apart from the subprogram input and output, only one single program element,
but you need the pause twice. If you apply a subprogram for it, you can easier

change the pause time. m
Now maybe you will argue that we should also use a delay time for the steps and

no counter. Then there would not be the problem to adapt the pause time and

the step time. But the disadvantage would be that the right motor and the left motor never turn
quite equally fast and therefore the robot would not dance reproducible forms. When you use the
pulse switch, on the contrary, you make sure that both the wheels move ever exactly the same
way, even if the accumulator is discharged or a wheel moves a little more difficult than the other.

Now we still miss the subprograms for the 1/8 straight step and the 1/8 turn on the spot. In fact, it
should work exactly as the other steps, only that you switch on two motors instead of one. The only
question is how is it done with the pulse switches. Simply set two pulse counters, one after the
other, will not do. Then the program would first wait 4 half-steps of one motor and then 4 half-steps
of the other motor. Waiting on only one of the two motors, we would approach the matter, but then
there would be problems if both the motors would not turn equally fast. The best solution is to start
both the engines and then wait till one of the pulse switches changes. Then you stop immediately
the motor’s pulse switch changes and wait then till the second pulse switch changes, then you

fischertechnik==x

ROBOPro

can stop the second motor. In all, it is unfortunately somewhat complicated, because you do not
know whether the pulse switches are open or closed at the beginning. Because two pulse switches
exist, there are in all four possibilities. But fortunately, there is already a completed subprogram
from the library for this function. Create a “Straight 1/8” subprogram and insert the “SyncStep* sub-
program from the homonymous library in the “ROBO Mobile Set” folder. If you do not know any
more how it goes on, please check up in Section 4.2 - The subprogram library

Now for the inquiring people among you, the “SyncStep” subprogram represented below will be
explained shortly. The people for whom a look at the subprogram is sufficient may willingly
overleap the following paragraph and the duty. It is entirely all right to use a subprogram without
understanding how it works -- as long as you understand what it does.

\\ 7, The subprogram first asks about the states of both the pulse switches, I1 and I1. Depending on
== whether |1 and 12 are 0 or 1, the subprogram selects one of 4 different program branches. The
branch quite on the left is for the case in which 11 and 12 have the 1 value at the beginning. The
sub pro- gram must then wait, in a logical way, that 11 or 11 should receive the 0 value. This will

be done in the loop with the two branching elements. As long as |1 and 12 have the 1 value, the
program turns in a circle. But as soon as one of the two inputs becomes 0, the respective motor

will be immedi- ately switched off. Then the subprogram waits with a “Wait on input” element until

the second input becomes 0 and then switches the second motor off. The loop in which it is being
waited on both inputs is necessary, because you do not know which of the two motors turns faster
and which of the pulse switches changes therefore faster. The other 3 branches operate exactly

so, but they start from another initial state and are therefore waiting the final state respectively
opposite to the initial state. For example, in the second branch from left, at the beginning, 11=1 and
12=0, as you can test easily, by pursuing the way via the first two branching elements.
Consequently, the second branch waits that the values should become 11=0 and 12=1. If you
would like to write the program yourself, you must watch out very exactly which are the initial

fischertechnike=x

ROBOPro

values of the pulse switches in each branch, and which you must wait accordingly.

If you have already browsed something over variables in the following chapter, try once to write a
subprogram with same function with variables. That is easier, because you can save at the begin-
ning the value of the two pulse switches with the = command elements in two variables and you
only need one program branch, in which you can compare the current value of the inputs with the
values of variables.

So, now back to the tango: The purpose of the
“SyncStep” subprogram consisted in writing therein a
“1/8 Straight line" subprogram, which goes 4 half-steps
straightforward. If you start the motors M1 and M2 and
you execute then the “SyncStep” sub program, the
motors are again stopped after a half-step.
Consequently, you must make all of it 4 times, and it runs
at the best with a loop element.

If you watched carefully, you now probably worry that the
motors, at the end of the “SyncStep” subprogram are < EE))éit / '\\/’5 O‘ /
v

switched off, and then switched again on immediately.
With the slower of two engines there is a very short SvneSt
break between switching off and on, which is necessary yncstep
to adapt the speeds of the two motors to each other. I
That is however harmless for the motors. In fact, the

interface regulates the motor speed also by constant switching off and on. That is called the PWM
(pulse width modulation). On the contrary, with the faster motor, switching off and on occurs so fast
that the motor takes absolutely no notice of it. However, in the “SyncStep” subprogram you could
also give up switching off the second motor and switch off both the motors as soon as the loop is
completed. With programming too, different ways often lead to the goal.

Try out whether a robot with the “SyncStep” subprogram really runs better straightforward, than if
you simply switch on a certain number of pulses on both the motors.

The last subprogram, which we still need, should turn the robot 4 half-steps long to the right on the
spot. It is interesting that you can use for that exactly the same “SynchStep” subprogram as for the
“1/8 Straight line” subprogram. The “SyncStep” subprogram namely stops the motors only, and the
stop command does not depend on the direction of rotation. You start the motor M1 in the loop
simply with a direction of rotation right instead of left. The pulse switches are also independent of
the direction of rotation. It is all the same whether the motors turn to the left or to the right, the
pulse switches always change from 0 — 1 and from 1 — 0. Consequently, in order to create the
“Turn 1/8” subprogram, you only need to copy the “1/8 Straight line” subprogram and to change
the direction of rotation.

fischertechnik==x

ROBOPro

4.4.2 Motor control with encoder motors

You should preferably begin with subprograms for the individual steps.
A sub-program for the first step "Left wheel 1 tum" is shown on the
right. Normally the drive motor for the left wheel is connected to the M2
interface output and the corresponding pulse switch to I1 interface
input, with counter-clockwise beingforward

For the first step, switch motor M2 clockwise (full speed) and then wait
75 full pulses at input C2. 75 full pulses means that you wait 75 times
for the change 0 — 1 followed by the change 1 — 0. Encoder motors
have advanced motor control that starts the motor and stops it again
after a set number of pulses. To this end, select the Action Distance in
the properties window and enter 75 pulses as Distance.

But the element does not have to wait for the motor to reach its target.
The program could do other things while the motor is running. Howev-
er, in this case we just want to wait for the motor to reach its target. To
this end, every motor output has its own "target reached" input. For
motor M2, this is input M2E.

By the way, an encoder motor needs two connections at the TXT or

TX Controller, a motor output M1 to M4 and a counter input C1 to C4. An encoder motor ~ always
uses the counter input with the same number as the motor output. This is why the counter num-
bers cannot be adjusted in the properties window of the advanced motor control.

Once the motor has reached its target, delete the Action Distance because the motor control stops
the motor on reaching its target. The motor then no longer reacts to normal motor commands such
as Left or Right. To do this, use the advanced motor control again, but this time with the Action
Stop. However, this is only necessary if you want to control the motor with the normal motor
element. The motor reacts to actions in the advanced motor control also without Action Stop.

For the further steps, you need the following subprograms:

o Right 1/4 (as left 1/4 with M1 and M1E instead of M2 and M2E)

o Left 1/8R (as left 1/4 but 37 instead of 75 pulses and backwards, i.e. motor clockwise)
e Right 1/8 (as right 1/4 but 37 instead of 75 semipulses)

e Right 1/8 R (as right 1/8, but backwards, i.e. motorclockwise)

Of course you cannot wait for 1/8 pauses using the pulse counter because no m
wheel moves in the pauses. Instead, we use a delay time. With the standard
models in the ROBO TX Training Lab, 37 pulses correspond to about 0.3 sec- 0.3s Z
onds. But this can differ in your model, depending on transmission and motor. So :

you need to write a subprogram for the 1/8 pause. Apart from the subprogram

input and output, the subprogram contains only one single program element, but m
you need the pause twice. If you create a subprogram for this, it is easier for you

to change the pause time.

Now you could argue that we should also use a delay time for the steps instead of the advanced
motor control. This would avoid the problem of having to adapt the pause time and the step time.
But the drawback would be that the right and left motor never turn at exactly the same speed so

fischertechnike=x

ROBOPro

that the robot would therefore not dance in reproducible forms. On the other hand, using the ad-
vanced motor control ensures that the two wheels always cover exactly the same distance, even if
the battery is flat or one wheel is stiffer than the other.

Now we just need the subprograms for the straight 1/8 step and the
1/8 turn on the spot. The advanced motor control also offers the possi-
bility of controling two motors at the same time, withthe
Synchronous and Synchronous Distance actions. The Synchro- nous
action ensures that two encoder motors turn at exactly the same
speed. As a result, your robot moves almost straight ahead. However,
exactly straight ahead is not possible with encoder motors,
because the wheels always have a certain slip. In our case, M1 and
M2 should turn at the same speed over a distance of 75 pulses. To do
this, use the Synchronous Distance action. For motors with
synchronous coupling, the target reached signal is not set for both
motors until both motors have reached their target. It is therefore
sufficient to wait for one of the two target reached signals. Don't forget
to stop both motors again at the end!

Try out whether a robot really does move straight ahead with more
accuracy using the Synchronous Distance action compared to con-
trolling both motors separately with the Distance action.

The last subprogram that we need is supposed to turn the robot to the

right on the stop for 37 pulses. Here again, use the advanced motor control with the Synchronous
Distance action, with both motors tuming in different programs for the subprogram "Turn
1/8": Think about which way M1 and M2 have to turn for the model to turn to the right on the spot.

4.4.3 Tango main program

Now, after you have all subprograms together, you can begin the main program. Now, it is not at
all difficult how the main program could look, you see below and on the next page

The main program runs the Tango steps endlessly in a loop. Try to use a counting loop for
executing the whole tango sequence 5 times in a loop. To that purpose, copy the content of the
main program with Processing/Copying and Processing/Inserting into a new subprogram and add
an Input and Output subprogram. Then you can run this subprogram 5 times in the loop.

-— [[
‘ left1/4 | ‘ left1/8B | | rigth1/8B ‘
¥ v
‘ rigth1/8 ‘ | forward1/8 ‘
| v v
‘ rigth1/4 | ‘ left1/8B | ‘ turn1/8 |
+ ¥
‘ pause1/8 ‘ ‘ pause1/8 |
L L

fischertechnik==x

ROBOPro

You find the finished tango program in the ROBOPro installation list under:

Sample programs\Manual\Tango Encoder Motor\TangoSolo.rpp Sample

programs\Manual\Tango Pulse Switch\TangoSolo.rpp

However, if you have a suitable robot, test once your self-written program or the finished program.

Now maybe you think: it is fairly nice, but actually two belong to dancing. Writing a program which
executes the lady step suitable for the gentleman step is however not difficult. You must thereto
only interchange leftwards and rightwards and forwards and backwards. First load your program
for the gentleman step and save it under a new name, for example TangoSoloLady.rpp. Now
change the subprograms, for example Left 1/4 to Right 1/4 B. For that purpose, you must change
M2 to M1 and the direction of rotation from left to right. You can change the name of the sub-
program by clicking on the properties tab and there enter a new name. The name also changes
automatically in the main program where the subprogram is called.

€Y

— [[
rigth1/4B rigth1/8 left1/8
v v
left1/8B backward1/8
J v v
left1/4B rigth1/8 turn1/8
v v
pause1/8 pause1/§
I I

The Turn 1/8 subprogram does not change. Can you imagine why? Interchange leftwards and
rightwards (M1 and M2 in the sub program) and forwards and backwards (motor
left- wards/rightwards) in Turn 1/8, and compare the original subprogram with the changed
subprogram.

If you have two mobile robots, now load into one the TangoSolo.rpp program and into the other
the TangoSoloLady.rpp program. If you have only one robot, perhaps you can try it out together
with someone which has also a robot. While downloading, you should state that the program is
started over the feeler at the interface. Now place both robots against each other as in the drawing
below, easily displaced, and start both robots at the same time by briefly pressing the “Start’
pushbutton (TXT or TX Controller) or the “PROG” pushbutton (ROBO interface) on the interface.

Lady

Gentleman

fischertechnike=x

ROBOPro

If you have started both robots somewhat at the same time, both will dance tango awhile prettily in
time with one another. However, because the motors and accumulators are not exactly alike, the
motors do not turn just equally fast and sooner or later the robots come distinctly off tact. How is it
done so that that both robots should remain intact over longer time, you will learn in the next
chapter.

4.5 Tango 2: Communication through Wi-Fi, Bluetooth or RF data
link

To remain in rhythm, the two tango robots have to coordinate their movements. The TXT Controller
has an integrated Bluetooth/Wi-Fi radio module and the TX-Controller has an integrated Bluetooth
radio module. The ROBO RF data link is available for the ROBO interface. The ROBO RF Data
Link consists of two radio modules. The interface radio module is built in as card directly into the
ROBO interface, the PC radio module in the red housing is connected to the PC over the USB. Up
to now, you have probably only used the radio link to manage your mobile robots by radio and
therefore without cable connection, online. But Wi-Fi, Bluetooth and RF data link can do much
more: two robots can exchange messages and so communicate with one another.

In the level 2, under Program items,
there is a Send, Receive sub-group,
with two elements. The left element in
the picture is the transmitter, the right
element, the receiver.

RCN 0
Hello

(TJ
The represented transmission element

sends the Hello message to the

TXT

Controller, the TX-Controller or the ROBO Interface (just "TX-Controller" below) with the radio call
number 1, abbreviated to FRN 1. The radio call number is a kind of telephone number, by means
of which it is stated to which controller the message is sent. More thereto you learn in the following
Chapter 4.5.1 Radio settings for the Robo interface on page 47 and Section 4.5.2 Bluetooth
settings for the TX controller on page 49.

The receiver at right in the picture operates like a program branching: If the Hello message was
received, the element is branched to the Yes output Y, otherwise to the o output N.

Let us suppose that the transmitter element is called on by a program on the controller with the
radio call number (telephone number) 2. It sends then over radio the Hello message to the inter-
face with the radio call number 1, because it is indicated in the transmitter as destination.
The interface with the radio call number 1 notes that a Hello message was received. If the next
time a receiver element asks this interface whether a Hello message arrived, the answer is Yes,
then again No, till another Hello message is received. If on this interface a receiver element next
time asks whether a Hello message arrived, the answer is Yes, thereafter again No, until a further
Hello message has arrived. The receiver cannot differentiate from which interface the message
was sentt. In order to be able to differentiate it, you must send different messages.

The message is an arbitrary word as in the example Hello. However, for technical reasons, only
the first three letters or numbers of the message are considered. You can indicate more than three
characters, but “Hello, “Help" and “helicopter” all stand for the same message, because all begin

t Starting from the level 4, there are groups of receivers for this purpose.

fischertechnik==x

Hello

Helio

ROBOPro

with ‘Hel'. Large and lower case and special characters (space character!? , % and the like) are
likewise not differentiated. XY! And XY? stand also for the same message. Numbers are however
differentiated, so that XY1 and XY2 are different messages.

Now the synchronisation of the two Tango
robots with the transmitter and receiver element is
not at all difficult. At the beginning of the step
cycle, one robot sends one “Shall we dance"
message and the other robot one “Let us dance*
message and it gets loose. Since the messages
should not be so long, we call them SG for
“Gentleman synchronisation“ and SL for “Lady
synchronisation®. On the right, two subprograms
for the synchronisation are represented. The left
subprogram is executed by the “Gentlemen” robot
with the radio call number 1 and first sends a SG
message to the “Lady* with the radio call number 2.
Subsequently, the “Gentleman” waits for a SL
message from the “Lady".

On the right, the characteristic window of the transmitter ele- x|
ment is represented. Under the Send command, you can [—
select an command (a message) from the list or enter your B A N
own command. Under the destination interface, you can select el B L9 B el = B e
whether the command should be sent to an interface with a) =

certain radio call number or to allinterfaces.

~Destination interface | element:
% Send ko interface with

== Branch if command 21xl o cal —
Radio call number: l—

~Receive command:

E il
Please note: when you use a custom 0K | Cancel |
command {nok a command from the list)
only the first 3 letters/digits are used ta
distinguish commands!

” Send to all inkerfaces

¥ sent directly ko this intetface
¥ sert to all interfaces

[Swap ¥ branches
(% Leave Y{M branches as they are

On the left, you see the characteristic window of the receiver
= Swap ‘it branches

element. As with the transmitter, you can select an command
ok | caca | (a message). Then you must further select whether the receiv-
er only reacts to commands which were sent directly to the
interface, consequently with a certain radio call number, or to

commands which were sent to all interfaces. You can also select both. At last, you can still inter-
change the Yes and No connections, as with any branching element.

So far we have spoken of “Messages". In the characteristic windows of the transmitter and receiver
and later on in the level 3, however the term “command* will be used. From the view point of the
Data transmission, that is the same. Whether a message is an command, depends on the interpre-
tation, and not on the kind of the transmission. In the level 3, you will have very much to do with

fischertechnike=x

ROBOPro

messages, which are, for example, commands for controlling a motor or a variable. Therefore, in

ROBOPro, the term “command” is generally used for messages.

Insert now into any of the the programs TangoSolo.rpp and
TangoSoloLady.rpp one of the synchronisation subprograms
illustrated on the previous side. Call the subprograms Sync.
You can naturally also write the subprograms in such a way
that the “Lady” invites the “Gentleman” to dancing. You call the
subprogram as in the picture on the right in the main program
any time at the beginning of the step cycle. You find the
finished programs in the installation list of ROBOPro under

Sample programs\Manual\Tango Encoder Motor\
Sample programs\Manual\Tango Pulse Switch\

TangoSyncGentl.rpp
TangoSyncLady.rpp

Load the two programs, each into a robot, and start the pro-
grams. With the ROBO interface and the data link, you'll see

(&)

«— |

Sync |eft
v
left1/4 rigl
v
right1/4 left
pau

that the robots only dance if the program on the "Lady" is started first. That is because the “Gen-
tleman” at first sends a SG message, and the “Lady” waits for this message. If the “Gentleman’
is started first, the message goes empty and the “Lady” waits and waits and waits.... If, on the
contrary, the “Lady” is started first, she already waits for the SG message when the “Gentleman” is
started. That is naturally somewhat impractical, in particular when you forgot which robot is the

“Gentleman” and which the “Lady”.

This problem does not arise with the TX-Controller because the gentleman does not send the

message until the Bluetooth radio link to the lady has been set up.

Can't we do something similar for the ROBO Interface?

Quite simple: The “Gentleman” must
repeat his invitation for dancing until the
“Lady” answers. Any time when the “Gen-
tleman” has sent the message, he waits
awhile whether an answer comes from the

“Lady”. In the example on the right, the
“Gentleman” sends the SG message and
then waits in a loop 10 times 0.01 seconds,
thus altogether to 1/10 second whether the
“Lady" answers. If the “Lady” does answer
within this time, the “Gentleman” sends
again an SG.

Now you probably ask yourself why the gentleman cannot simply send a SG message in a

loop

and immediately check whether he received an SL message. That is because the transmission of
the message from the “Gentleman” to the “Lady” lasts 1/100 to 2/100 seconds. The way back lasts
the same time. Even if the program on the “Lady” already runs, it consequently takes up to 4/100
seconds till the answer is there. Within this time, the gentleman could send an amount of SG
messages, which would be all transmitted to the “Lady“. For the first synchronisation that plays no
role, but the surplus SG messages should remain saved in the receiver element in the lady pro-
gram. At the beginning of the next step cycle, the “Lady” would then already have received an SG

fischertechnike==x

ROBOIF
ROBO-IF

ROBOTY
X-
Controller
—
ROEBOIF
ROBO-IF

ROEQIF
ROBO-IF
\\/
/f

=
ROEQIF
ROBO-IF

Interface
test

ROBOPro

message without the “Gentleman” would have sent a new message. Then the “Ladies” would then
no more wait for the “Gentlemen®. Therefore the “Gentleman” should wait for a sufficiently long
time, before a message repeats.

The “Gentleman” could naturally, also after transmitting, wait 1/10 seconds and then first check
whether he has received an answer. Waiting in a loop 10 times 1/100 second has however the
advantage that the “Gentleman” can continue the program nearly immediately, if he has received
the answer from the “Lady”. Now try out whether the program works better, if you change the Sync
subprogram in TangoSyncGentl.rpp, as described above. The robots should now always start as
soon as the program on the second robot is started, independently of which robot is first started.

If you let your robots dance, until one of the accumulators becomes empty, the synchronisation is
no more sufficient per step cycle. The robots synchronize in fact at the beginning of each step
cycle, but during the cycle they run noticeably apart, if one of the accumulators comes to its limits.
It is better to insert an additional synchronisation after each step. Here it is however clear that both
programs run, so that you can give up a repetition. So that the initial synchronisation and the step
synchronisation should not come in disorder, you should use for that two different subprograms
Sync1 and Sync2, which use different messages, for example SH1, SL1 and SH2, SL2. You find
the finished programs in the installation list of ROBOPro under

Sample programs\Manual\Tango Encoder Motor\
Sample programs\Manual\Tango Pulse Switch\

TangoGentl.rpp
TangoLady.rpp

You find there a TangoNachrichtenMonitor.rpp. If you have a third TX-Controller or a third interface
with ROBO RF data link module, you can start this program in on-line mode, while both Tango
robots dance. The program shows on the screen which messages were sent. The program uses
level 3 elements and you need not understand for the moment how the program works.

4.5.1 Radio settings for the Robo interface

Each ROBO interface gets an own radio call number between 1 and 8 and a frequency assigned to
it, which you can adjust both in the Info window of the Interface Test. In the following illustration,
you find the ROBO RF Data Link adjustments, on the right above. All RF Data Link modules, which
should exchange messages with one another, must be adjusted to the same frequency. The
frequency is entered as a number between 2 and 80. You can change the frequency, if several
groups of robots in an area, for example in a school or with a competition, should communicate
independently from one another. All robots, which belong to a group, use the same frequency.
Different groups use different frequencies. You can also change the frequency, if the RF Data Link
does not function well on the frequency used by you. Many radio systems, for example wireless
PC networks, use the same frequency range (2,4 GHz) as the ROBO RF Data Link. If the RF
DATA Link is disturbed by other radio systems, a frequency change can remedy the problems.
Note however that you must then change all the RF Data Link Modules and the PC Radio Module,
since all devices in a group must always use the same frequency.

fischertechnike=x

ROBOPro

== Interface test 21

Interface | EML | EMz | EM3 Info

rInterfacetype: — | [ROBORF DataLink

|R0b0 Interface Enable; I
Message router: -

[USE serial number: ———————— | | Frequency (2..60% I 2 :II
Current seial number: |3 Radio call number (1..8): I 3 jl
Default serial number: |3 = Write to Flash memory

~ wri
Unique serial number ! Il 122 M52 (2 S AT
¥ Use default serial number ‘Wit to Interface |
" Use unique setial number

Firmware version: | 0.47.0.03

Witite to Inberface |
Update from file |
I~ Update firmware:

All the ROBO interfaces with RF Data Link, which are adjusted to the same frequency, must have
a different radio call number between 1 and 8. The radio call number 0 is reserved for the PC
Module of the RF Data Link, the “red box“. Thus, maximum 8 interfaces with installed radio
module and an RF Data Link PC module can communicate with one another. The radio call num-
beris, to say so, the telephone number of an interface in the radio net. You can assign the
numbers 1 to 8 arbitrarily to up to 8 interfaces.

The Enable hook is nearly always set. However, you can deactivate a radio module in an interface,
if you just do not use it in a model and you would like to save current without dismantling the
module.

After you have made all the adjustments, you can save the adjustments in the interface with the
Write to interface button. As a rule, you will write the adjustments in the Flash memory. The
adjustments are then preserved, even if you switch the interface off. If you would only like to try
something out only briefly, you can however write the adjustments into the temporary memory as
well.

You need not care about the firmware version, that is the version of the internal control program
for the RF Data Link. ROBOPro prompts you to automatically update the firmware, if that should be
necessary.

In order to make communication possible between the two Tango robots, first connect one of the
two robots with the USB PC interface and open the interface test window. Possibly you must press
the COM-USB button before and select the interface. In the interface test window, change to the
partner info and adjust there the frequency 2 and the radio call number 1 and save the adjust-
ments with the Write to interface button. Now close the interface test window, connect the other
robot with the USB interface and adjust the frequency 2 and the radio call number 2.

Premises for the radio communication

Even if, as in the case of the two Tango robots, two interfaces change messages directly with one
another over the RF Data Link modules, the red PC radio module is necessary. It serves as switch-
ing center for all the other modules and must therefore be connected to the USB interface of a PC.
The PC must be switched on and may not change to a current saving or a sleep condition, so that
the PC radio module should be supplied with current. The PC radio module must also be adjusted
to the same frequency as the radio modules in the interfaces. The radio call number of the PC
radio module is adjusted to 0 and cannot be changed.

fischertechnike==x

I'd

COM
Use

1

ROBOPro

In order to adjust the frequency of the PC radio module, connect that PC module to the PC USB
interface. You can then adjust the frequency over the Info Partner of the Interface test window
exactly as in an Interface radio module . If the PC radio module cannot reach an interface with
built-in radio module, for example because the frequency is not yet correct, you receive an error
message when you open the Interface test the window. However, the error message only refers to
the fact that no interface was found and that no inputs and outputs are thus available. However,
you can make the adjustments in the Info window despite the error message.

Interface selection through the interface (COM/USB) button

So far you probably worked mostly with only one ROBO interface. =]
As soon as you have connected to the PC more than one ROBO P S———
interface or a PC radio module with more than one ROBO inter- Pleasa select anel

face accessible over radio, the question arises, to which interface R TR
is to be connected the ROBOPro when a program in on-line #00000003 (Robo Interfacs (RF:2))

mode is started, a program download is made or the Interface
test window is opened. When you press the button for the inter-
face options (COM-USB button), the interface selection first Remember Tnterface:
appears. When you select USB there and ROBOPro finds more

than one interface at the USB bus or in the radio network, the

selection window is indicated on the right. In this example, the

PC radio module of a RF Data Link is connected to the USB LI
interface of the PC. The PC radio module has found by radio two
ROBO interfaces with RF Data Link, which have the radio call numbers 1 and 2. You can select in
this window which of the two interfaces is to be used for future operations. As a rule, you select
here one of the interfaces, and not the ROBO RF Data Link.

If you select the RF Data Link as in the picture above, ROBOPro connects to the interface with the
smallest radio call number, 1 in the example. There is however an important difference: When the
RF DataLink proper is selected, the adjustments in the Info Partner of the Interface test window
refer to the PC radio module proper, and not to the interface radio module in the interface connect-
ed by radio. Thus you can change, for example, the frequency of both the interface radio modules
and of the PC radio module by radio, without having to connect the interfaces to the PC over a
USB cable. To that purpose, you first select, over the COM/USB button, one of the interfaces,
change the frequency by means of the interface test the window and close again the interface test
the window. If now you press again the COM/USB button, the interface with the changed frequen-
cy has disappeared from the list, since it can no more be achieved by the PC radio module. Select
now the second interface and change the frequency. If you press once again the COM/USB button,
probably no more selection list is indicated, because the PC radio module is the only accessible
unit. If you have still connected further interfaces directly to USB and the selection list appears,
select the PC radio module. When opening the interface test, now an error message appears that
no interface was found. However, that does not disturb any more, since you would only like to
change the adjustments of the Data Link. If you change the frequency of the PC radio module and
press again the COM/USB button, the PC radio module and both the interfaces are indicated again,
because now all the three have again the same frequency.

" By serial number
{+ By list ordzr

Why have you to change first the frequencies of the interfaces and only at last the frequency of the
PC module? Try out what happened, if you first change the frequency of the PC module.

It can moreover happen that changes should only have an effect after a few seconds. If the selec-
tion list of the COM/USB button does not correspond to the current configuration, simply press the

fischertechnike=x

ROBOPro

COM/USB button once again. If you cannot any more reach an interface by radio, connect it at
the best directly to the PC USB interface and control the RF DATA Link adjustments for the

interface.

4.5.2

Every TXT or TX Controller is given its
own radio call number between 1 and 8,
which you can allocate in the window for
the Bluetooth settings. In ROBOPro
programs, the radio call number is used
like a telephone number to identify the
individual controllers. First of all, you

Bluetooth settings for the TXT or TX Controller

Bluetooth settings m

Please note:

These settings are required for command based communication between multiple
TX controllers only! I you have only 1 TX controller, please ignore this.

Bluetooth settings for a single TX controller are done using the COM/USB button.

(=

v RCM 1 :ROBO TX-367 (00.13.7b.53.08.85, COM11)
v RCN 2 : ROBO TX-438 (00.13.7b.53.09.cc, COM9)

Scan finished!

RCN 3 : ROBO TX-406 (00.13.7b.52.b2.04, COM7)

must log all interfaces onto the PC as
Bluetooth modules. The instructions for
the TXT or TX Controller describe how to
thist. To proceed, your PC needs
either an integrated Bluetooth interface
of a USB Bluetooth adapter. Once all
controllers are logged onto the PC and S®eMer | =]
switched on, open ROBO Pro. Hilfe oK Abbruch
Press the COM/USB-Button and define

one TXT or TX Controller which will be connected via USB or Bluetooth with ROBO Pro in online
mode. Then open the Bluetooth settings window in ROBO Pro using the menu item Edit Bluetooth
or press the button for the Bluetooth toolbar. Press "Scan" to fill the list with TXT or TX Controllers.

Set RCN: Hoch | Herunter |

s« |4

Central switch: IRCN 1: ROBO TX-367 (00.13.7b.53.09.85, CONLI

Set ROBOPro file: Assign ... | Clear |

Depending on which Bluetooth adapter you use, it may happen that the interface names
don't appear in the list. In this case, you can select the corresponding COM interfaces each in
turn by pressing the COM/USB button and then doing an interface test to find out which interface is
which. You also have to manually assign the corresponding COM to each TXT or TX Controller
under Set COM Port. But in most cases, this happens automatically.

The list with detected TXT or TX Controllers is always sorted according to radio call number (RCN).
You can change the radio call number by selecting a row in the list and pressing up or down. For
example, if you select the row for radio call number 2 and press up, the controller moves one row
upwards and is given the radio call number 1. The controller from row 1 moves one row down-
wards and is then given the radio call number 2. You can also select a row, enter the radio call
number in the text box next to the Set button and then press Set.

Once you have adjusted the radio call numbers, you then have to say which controller is to take
part in the radio transmission. As a rule, that will be all the controllers in the list. However,
in schools it is possible for controllers from other experimenting groups to appear in the list. To
select the controllers for communicating with your program, place a tick at the start of the row in
the list.

tFor Bluetooth experts who can manage without instructions: the main code is 1234.

fischertechnik==x

3)

Bluetooth
settings

ROBOPro

As it is tedious to download several programs on several

interfaces, ROBOPro offers the possibility of allocating | & Dewnload =
every TXT or TX Controller a ROBOPro .rpp file in the Memory area

list. Please use the Assign and Clear buttons. The @ B {contents iost when powered donr)
download window offers the option of dOWn|Oading all Flash (retained through power down)

these programs at once. Start program

@) Start program after download

Cen tr al contro I Start program using button on Interface
Options
Central control Download all Bluetooth programs ()

OK]| Cancel |

v

Controller 2 Controller 3 Controller 4

The exchange of messages between 3 or more controllers uses a star topology. One of the con-
trollers acts as central control as shown here on the left. For controller 2 to exchange messages
with controller 3, the messages are sent via the central control. It is usually unimportant which
controller assumes the central control function. However, it DOES matter which controller acts as
central control for mobile robots that can move outside the radio range. This selection is
again made in the window for Bluetooth settings. Another important point is that the online
connection with the central control is more difficult and less reliable. This is because the PC plays
the role of central control for the online connection, while the central controller acts as control
centre for some Bluetooth connections, but not for others. As already indicated, this does actually
work but it takes much longer to set up a connection.

Where are which settings saved?

The controller selection (tick at the start of the row) and the allocation of ROBOPro programs to
controllers is part of a ROBOPro program. With multiple downloads, all programs assume the
Bluetooth settings from the program that started the download. On the other hand, the allocation of
radio call numbers and controllers is not saved in the ROBOPro program but on the PC. This
makes it easier to swap ROBOPro programs with others.

fischertechnike=x

ROBOPro

5 Level 3: Variables, panels & Co

Think about resetting ROBO Pro in the Level menu to Level 3 or higher!

Just imagine that you discover a fascinating machine in a preciously unexplored side corridor of a
museum, and you just have to emulate it in fischertechnik. But while investigating the machine you
lose track of time, and don't notice that all the other visitors are leaving the museum. Only when
the museum is already closed have you studied the machine sufficiently thoroughly to be able to
make a replica. But unfortunately you must first spend an unpleasant night alone in the museum
before you can set to work. So that this doesn’t happen again, you go to the curator of the museum
and volunteer to program a visitor counter, which will count all the visitors on the way in and on the
way out again, and switch on a red warning lamp as long as there are still visitors in the museum.
But how do you do that? How can you count something with ROBO Pro? The answer: with varia-
bles.

5.1 Variables and commands

A variable is an element that can hold @ prs 21x]
- V[?‘ T = number. In the variable Properties window — ~
you enter a Name, which should give some Mame: [

hint as to what sort of number is stored in Tnitial value: [0 |
the variable. Under Initial value you can specify what number — pippe—
should be stored in the variable at the beginning of the program. & Tnteger -32767..32767

Data type determines whether the variable should be a whole € Floating paint 48bit

number (for example, 1, 2 or 3) or a decimal, also called floating —Life time:

point number (for example, 1.3457). For now, we will only use Local

whole numbers. The Life time setting will be explained in Section & Giobal

8.4.2, Local variables on page 92. Bl st mieizs by azne

You can alter the stored value by sending commands to the o | e |
variable. A variable understands three different commands: =, +
and -. The = command replaces the stored value with a new value. The + and — commands add
something to or subtract something from the stored number.

fischertechnik==x

ROBOPro

You send the commands to the variable with a
= O Command element. Like most other program

elements, the Command element has a blue
program entry above and a blue program exit
below. But to the right it has something quite
new, an orange connection. That is a command output. Whenever
the Command element is executed, it sends a command through
this output to all elements connected to it. The variable has a
corresponding command input on the left-hand side. When you
connect the command output with the command input, instead of
the usual blue connecting line, ROBO Pro draws an orange line.
Program elements can send commands or messages over these
orange lines, and thus exchange information.

The program on the right initially sends the variable Var an =1
command. As a rule, a command consists of the actual command,
such as = and a value such as 1. The =1 command sets the
variable to 1. After a second, the program sends the variable a +1

command. The variable thereupon adds 1 to its previous value
and now has the value 2. After a further second the program sends
a -1 command. Thereupon the variable has the value 1 again.

Now try to draw this simple program in ROBO Pro. You will find the command elements in the
Commands group, the variables in the group Variable, Timer, If you execute the program in
online mode, you will see how the value of the variable changes.

That's all very well and good, you may be saying: | can look at the
value of the variable, but just what do | do with it? Quite simple: The
variable has an orange connection on the right, over which it sends
messages with its current value to all connected elements. There
are some elements in ROBO Pro with an orange input on the left,
which you can link with the output of the variable. So, for example, in
the group Branch, Wait... you will find a Yes / No Branch element
which doesn't query an input directly, but rather can request any
value at all, among others the value of a variable.

So the visitor counter for the museum can be programmed as follows:

€Y

e [

/_?_I: ./ /_1’_5-/ /M1 I&//W-J&/

fischertechnike=x

ROBOPro

The entry turnstile operates the sensor on I1; the exit turnstile operates the sensor on 12. As soon

as |1 is pressed, the program sends a +1 command to the variable Counter. Then the program
waits until the sensor on I1 is released again. With the sensor for the exit on 12, the behavior is
exactly the same, except that here a =1 command is sent to the variable Counter. Every time the
counter changes, the state of the count is checked. If the variable Counter has a value >0, the red
warning lamp on M1 is switched on; otherwise it's switched off.

Copy the above program and try it out. As soon as you press the sensor on |1 and release it again,
the warning light on M1 lights up. If you operate the sensor on 12, it goes out again. If you operate
I1 several times, you must operate 12 the same number of times to make the warning lamp go off
again. Now try to see what happens if first 5 visitors come, then 2 go, then another 3 come. How
many times do you have to operate the sensor on |12 to make the warning lamp go off again?

5.2 Variables and multiple processes

Perhaps you noticed while testing the visitor counter that problems arise if switches on 11 and 12
are pressed simultaneously. As long as one switch is pressed down, the program can't react to
the other one. Since the visitors at the entrance and the exit may very well pass through the re-
spective turnstiles at the same time, this leads to counting errors. You can avoid these errors by
using several parallel processes. Up until now, all programs have had only one Start element. But
there is nothing to stop you from using several Start elements. All program paths with their own
Start element will then be worked through concurrently. So experts talk about concurrent pro-
cesses. Using this technique, you can change the visitor counter program as follows:

—

h A":O P

M Q//M*Q/

Now independent processes are used for [1 and 12. If the sensor on I1 is pressed, the process for
12 remains independent of this and can continue to monitor the sensor on 12. A separate process is
also used to query count values and to switch the warning lamp on and off.

oounler
0

As you see, there is no problem about accessing a variable from several processes. You can send
a variable commands from several processes and you can use the value of the variable in several
processes. So variables are very well suited for exchanging information between processes.

The museum curator is so enthused by your brilliant visitor counter that he immediately asks you
for the solution to another problem: The museum has installed a new exhibit. But as all the visitors
want to see the new exhibit, there is such a crush there that nobody can see anything at all any
more. So the curator would like to limit the number of visitors in the exhibition area to 10. The
curator has installed a turnstile at the entry and exit respectively of the exhibit. The turnstile at the
entry may be locked electronically. Now he only needs a competent program developer: you!

Try to develop the described program with ROBO Pro. Essentially, it functions like the visitor
counter. You can simulate the electronic locking of the entry with a red lamp on M1, which should
be switched on when there are 10 visitors in the exhibition.

fischertechnik==x

\\I/

ROBOPro

5.3 Panels

After you solve the problem with the exhibit, the museum curator has yet another assignment for
you. He would like to know how many people visit his museum in one day. Of course a program
that can count is no problem for you, but how can you display the value? Of course, you could
execute the program in online mode, which allows you to follow the values of variables. But for a
computer-illiterate like the curator, that is rather complicated. Something simpler is required!

For cases like this, ROBO Pro has panels. A panel is a page of your own on which you can put
displays and control buttons. Load your visitor counting program and, in the function bar, switch to
Panel.

Function I Symbol Panel |TX Display | Properties | Description I

Initially, the control panel is an empty gray space. Onto this area you place

displays and control elements which you find in the element group window und o
Panel elements. Among the panel elements you will find buttons, slider con- s
trols and the like. Under Displays you will find text displays, display lamps, and & Drawing
displays with rotary pointers.

[El- Panel elements

Caution: A panel is part of a subprogram. If you have subprograms, make sure you create
the panel under Main program and not under a subprogram! Later on, as a “pro”, you will be
able to create multiple panels.

If you have drawn a panel and it has thereafter suddenly disappeared, then presumably you
selected a subprogram in the subprogram bar. Switch back to Main program and your panel
is sure to be there again.

For the visitor counter, you take a Text display (the color doesn't
matter) from the Panel elements / displays element window, and

position it in the panel. This display is now required to show
the number of visitors to the museum.

But first you must add to your program a second variable, which will count the number of visitors at
the entrance without deducting them from the total again at the exit. In the function bar, you switch
back to Functions, and insert the variable Total as follows:

A 3
AST 7avis 'i-/

S Wit Y

\\/ y, As you can see, a Command element can also be used to send a command to two variables at the
== same time. The variable Total does not receive the =1 commands, because commands are only
transmitted along the orange lines in the direction of the arrows. On the other hand, the +1 com-

fischertechnike=x

ROBOPro

mands are passed to both variables. But this is only done here as an example. As arule it is
simpler and more transparent to use a second Command element.

Tip: If orange lines branch, it is often more practical to draw the lines from their target to their
origin. If you would like for example to draw the line to the variable Total, click first on the in-
put to the variable Total and then move the line backwards to the branch point. If, on the other
hand, you want to start an orange line on an existing orange line, you will have to double-click
(with the left mouse button) on the point where the new line is to begin.

So, now you have a text display in the panel and a variable which you
- \ Panel | would like to present in the display. Now how do we link the two? As the

Display| text display and the variable are on separate pages, you would have trouble

trying to connect the two with a line. For this reason there is a special

element that transmits a value that is to be presented in a panel to the corresponding display. You
will find the element Panel output, depicted above, at the end of the Inputs, outputs group. Insert
one of these Panel output elements into your program next to the Total variable, and join the right-
hand connection of the variable to the Panel output’s connection.

As you will normally have more than one display in a panel, you still need to
let the panel output know which display to send the variable values to. This is
done quite simply by means of the Properties window of the element. If you
right-click on the Panel output element, you will see a list of all the displays
that have been inserted so far into a panel. As every subprogram can have its
own panel, the panels are listed according to subprogram. In our example,
there are no subprograms, only the main program. Within this there is one
display with the name Text. Select this display and click on OK. e[|

As soon as you have linked the Panel output with a display, the symbol and Main pro
the inscription change accordingly. The panel out we're using produces a - B Text

connection with the text display named Text in the (sub)program MAIN.

Once you have inserted the panel output and linked it to the text display, the program looks like

this:

/4 g Ili-/

L ARQ o

A

"I‘I Hmuunter}_ M:?/ Mﬂlé/

it

_.| ot H- n-ldTi; e
Try it out straight away. As soon as you have started the program in online mode, the display in the
panel shows the number of visitors that have passed through the turnstile at the entry.

Hint: If you want to use more than one display in a panel, it is important that you give every
display a different name, so that you can distinguish between them when linking them with
the program. To do this, you right-click on the display in the panel. There, you can enter a

fischertechnike==x

ROBOPro

name under ID / Name. Then, if you connect a panel output with the display, this name ~ will
appear in the selection window of the panel output. As we have only one display for the mo-
ment, however, the name is not important, and we retain the name Text.

The program is not quite perfect yet. What is still missing is a switch to reset the counter. For this
purpose, however, we don’'t want to use a normal pushbutton switch, but rather a button we can
push on the panel.

You will find this operating button in the element window under the group Oper-
ating / Control elements. In the function bar, switch to Panel and insert a button
into your panel next to the text display. The inscription Button is of course not
quite appropriate, but it can easily be change using the button’s Properties window. Right-click on

the button, enter for example 0000 as Inscription and confirm with OK.

Exactly as in the case of the text display, we also need a program element
erg P@Nel | that will link the button to the program. So start by switching back to Func-
Entry tion in the function bar. You will find the illustrated Panel input element in
the Inputs, outputs group in the element window. Position it in the flow
chart below the existing program.

Now you still have to link the panel input with the button in the panel. i
To do this, you right-click on the Panel input element. As with displays, m|‘ |j:'
the control elements are listed according to subprogram, as every St
subprogram can have its own panel. Now select the 0000 button and
confirm with OK.

You may have noticed that it is possible to set this element to all sorts

of inputs through the tab bar of the Properties window. However, this

will not be explained until Section 5.5 - Command inputs for (H—‘
=

subprograms.
The value delivered by a panel input is queried with a Branch element.

You have already used this element to query variables. The complete
program with the “set-to-zero” function now looks like this:

fischertechnike=x

ROBOPro

(3 3 5

[Tied] | [T b
If}_L t [counter X
. T e e

[total Main pre
]] Text

Whenever the 0000 button is pressed, an =0 command is sent to the Total counter and sets the
counter to zero.

5.4 Timers

After your triumphs, the museum curator does know what he could do without you, and so appoints
you the museum’s computer consultant. Of course, a position like this carries a lot of glory and
renown with it, but also a lot of work, for example the following: The museum has many models
that move when a button is pressed. But some visitors push for rather a long time on the buttons,
so that the models overheat and keep needing to be sent off for repairs. Now the curator would the
models to run for as long as the button is pressed, but only up to a maximum of 30 seconds ata
time. Once the model has run, it should then take a pause of 15 seconds before it can be switched
on again.

Hmm, no problem, you may be thinking. A few time delays, a few program branches, and you're
done. Feel free to try it! After a while you will come to the conclusion that it is not so simple, and for
two reasons:

e During the period of 30 seconds the program must query the button to establish whether the
button is released before the 30 seconds expires. OK, granted, you can solve that ~ with two
concurrent processes, see Section 5.2 Variables and multiple processes on page 53.

e If a visitor releases the button after 5 seconds, and then presses it again after 15 seconds,
the 30 second time delay must be started all over again. But the time delay has only been
running for 5 + 15 = 20 seconds, and so is still active. Even with processes running in parallel,
you can't start a time delay over again. Perhaps it would work in three processes with two
time delays which you start in alternation, but thinking this through will bring on a headache.

fischertechnik==x

ROBOPro

Isn't there a simpler way to do this? Yes, there is: timer

variables, or timers for short. Initially, a timer functions { * }
like a normal variable. The timer keeps track of a number
and you can alter the number with =, + and — commands.
What distinguishes a timer, however, is that it automati- ﬁ 11 .
cally counts down the number at regular intervals until it

reaches 0. The time interval between decrements can be

set in steps between one thousandth of a second and a

minute. Many time control problems can be solved more

elegantly with timers than with time delays. Do you see = 3% % 1s ZH

|

yet how you can solve the problem with a timer?

Correct: As soon as the visitor presses the button on I1, >
you start the model and then set the timer, using an X
= command, on 30 x 1 second = 30 seconds. Then you
go into a loop, checking whether the period of 30 seconds L A>0 8
has expired or whether the switch on |1 has been re- g

leased. When either of these stopping criteria is fulfilled,

you stop the model and wait 15 seconds. Then it all starts
again from the beginning.

Admittedly, the programs are starting to get more de-

manding. But just try to solve the following exercise: m
Develop a program with the same functionality but using

time delays instead of timers! Note: This is a very difficult 155 Z
exercise and only intended for those who like to tinker I

around for a while longer with a puzzle every so often!
Everyone else should simply proceed to the next section.
There are two approaches to solving this exercise: You can use two time delays which you start
alternately in their own processes. As there is an off time of 15 seconds, one of the two time delays
will have expired by the end of the second cycle at the latest, so that it can then be started over
again. Another alternative would be to simulate a timer with a normal variable and a Time delay
element with a short time delay of say one second.

5.5 Command inputs for subprograms

As always, your program works brilliantly, and fischertechnik is pleased, because all the models in
the museum are being equipped with the ROBO Interface. Only, like public institutions everywhere,
the museum is strapped for cash. So the curator would like to make do with as few Interfaces as
possible. But then a ROBO Interface has four motor outputs and also enough inputs to control four
models. As most models can only turn in one direction, you can control as many as 8 models via
the single-pole outputs O1 to O8.

This of course saves the curator a lot of money. But on the other hand you now have to copy the
program 7 times and adjust all the inputs and outputs to suit. Or maybe not? Couldn’t you also do
that with subprograms?

Indeed you could, but here a problem emerges: If you use the usual

sensor queries from the Basic elements group in a subprogram, every
call of the subprogram queries the same sensors and controls the

same motors. The reason is that, in a Motor output element for

fischertechnike=x

ROBOPro

example, the control command for the motor (right, left, or stop) and the motor output number
(M1,M2,...M8) form a unit. As there is only one version of the subprogram, the same motor
always appears in it. If you alter the motor number for one subprogram call, it will also be
altered for all occurring calls of the subprogram. So, once again, you'd have to copy the
subprogram 7 times, give every subprogram a different name and go all the way through
manually adjusting the inputs and outputs.

But there is a much more elegant solution to this problem. The trick is to

separate the control commands from the motor symbols. Then you can put _gl
the control commands (left, right, stop) in the subprogram and the IF1

Motor elements in the main program. In the subprogram, using a Command

element, which you have already encountered with variables, you then send the left, right or stop
commands to the main program, where you can then dispatch them to the various motors. For a
motor there is a Motor element that only represents a motor, without determining what the motor is
to do. This element has a command input, to which you can send commands. You can replace
elements from the Basic elements group with a Command element and a Motor element as
follows:

RO-M @ DM@ (&M@

In the upper row you see Motor elements from the Basic elements group. In the second row are
depicted the corresponding combinations, achieving exactly the same effect, consisting of a com-
mand element from the Commands group with a motor element from the Inputs, output group. In
fact, the upper elements are just abbreviations or simplifications for the combinations in the lower
row. Each sends a left, right or stop command to motorM1.

The same also applies to querying sensors:

Eu* @1 T

In the upper row, you see again elements from the Basic elements group. In the lower row you
will find, for each of these basic elements, a corresponding combination of a digital input and an
element from the group Branch, Wait, You will find the orange Digital input element, like the
Motor element, in the group Inputs, outputs.

Using this trick, you can separate the logic of a program from the inputs and outputs. But there is
still something missing. If the motor and sensor elements are supposed to be in the main program
and the commands in a subprogram, there must of course be a way of linking the sensor and

fischertechnik==x

ROBOPro

motor elements with the subprogram. You will find the connection elements needed for this in the
Subprogram 1/0 group.

Via a subprogram command input, you can send commands to a subprogram

In m from outside. The Digital input element (sensor) sends its new value over the
orange line if the state of the input changes (with what is knownasan “= com-
mand”). In the element’s dialog field you can give the input a name.

Via a subprogram command output you can send commands from a subprogram.

So, for example, you can send the commands left, right, or stop from a subpro-

gram to a motor. For this element too, you can enter a name in the dialog field.

Now you have everything you need for your multiple-model timer with subprograms.

Main program Subprogram Time

aMotor>

\
> I/a The subprogram Time is almost exactly the same as the program in the previous section. The

Wait for digital input elements at the beginning and in the loop have, however, been replaced by
Wait for elements, with data connections for orange lines, from the group Branch, Wait, Both
are linked to the subprogram command input Sensor. The two motor control elements at the
beginning and end of the program have been replaced by command elements. Both send their
commands to the subprogram command output Motor.

The subprogram Time is called four times in the main program. The subprogram command input
Sensor has automatically generated the orange connection S on the left-hand side of the green
subprogram symbol. The connection M on the right-hand side got there because of the subpro-
gram command output Motor. The connection S of the subprogram symbol is connected each in
case with one of the sensors 11 to 14 respectively. One of the motors M1 to M4 respectively is
connected in each case to the connection M. In this way, each calling of the subprogram Time
queries a different sensor and controls a different motor!

Try copying the above subprogram and main program and trying it out. You must draw the subpro-
gram first, because otherwise you won't be able to insert the subprogram into the main program. If

fischertechnike=x

ROBOPro

you have difficulties with the subprogram, refer once again to Chapter 4 - Level 2: Working with
subprograms on page 28.

Note: You find further information to command inputs in the Section 6.3 -
Sending arbitrary commands to subprograms on page 68.

5.6 Lists (Arrays)

Now that all the trial equipment in the museum has been fitted with your cost-saving control system,
there is not long to wait for the curator's next problem: In a space with very valuable antique
exhibits, harmful temperature variations have been occurring recently. You presume that this has
something to do with the level of insolation. To demonstrate this dependence, you would like to
build a device which records the level of illumination and the temperature. Of course, the ROBO
Interface has several analog inputs and you already know how to store values with the aid of
variables. So the whole thing should be no problem, or should it? To record two values every five
minutes over 12 hours requires 288 variables! But that would make for a gigantic and less than
conspicuous program. Can we perhaps simplify this using subprograms again? We can, but there
is a much better way. The List element (programmers call it an “array”).

You can store not just one value but a whole list of values in a list. Initially, as a rule, a list is
empty. If you send an Append command to the upper left data input marked W, the value
specified in this command element will be appended to the end of the list. You can set the
maximum length of the list between 1 and 32767 through the Properties window of the List ele-
ment. This makes the program to record temperature and illumination quite simple:

i)
5 AY _+ 5 e

== IH brightness

The temperature sensor is connected to
analog input AX and the brightness sensor to
analog input AY. The program reads in both
values every five minutes in a loop, and adds

them to their respective lists with the Append AX
command. I'

temperature
|

Hint: When inserting the command element
you must activate the option Data input for
command value in the Properties window.
Then a data input will appear on the left of

the command element, and you can con- i g
nect the analog input toiit.

To test the program, it is helpful to reduce the loop delay from 5 minutes to a few seconds.

You must now be wondering how you can read the stored values back from the list. There are two
possibilities here: You can read the values as for an ordinary variable and process them further in
your program. As the list contains more than one element, you first select the number of the ele-
ment you want to retrieve at the left data input, marked I. Then the value of this element is given
out at the data output R in the right-hand side.

fischertechnike==x

ROBOPro

But ROBO Pro can also store all the values

from the list in a file on your computer, which = "~ =

you can then process further for example in iuneee [0
Excel. As in the present case you only want to s [0

look at and compare the recorded illumination sl vake i

levels and temperatures, this is doubtless more . O
practical. ROBO Pro saves the values in what opend
is called a CSV file (comma-separated values). set ol
CSV files are text files which contain one or Irsert
more columns each with a sequence of ol ok
data. Thus you can also save several —[iesdfom cavfie

SerieS Of measurements SUCh as !_Readme(S\fhstmemnry(seea\snmenu"F\le/Ladhst.csvmemfy”g‘
temperature and illumination in separate ...

columns of a CSV file. The columns are || = E
separated with commas. In countries where [retocoiamenn (s seonen i sl e van

one writes 0.5 with a commaand not 0.5
with a period (e.g. Germany), a semicolon (;)

List data type:
’7(-‘ Inkeger -32767,.32767 (Floating point 48bit ‘

is often used as the column separator. If you ﬁff‘*‘a“":f‘gﬁh ‘ S
have problems exchanging CSV files between =
ROBO Pro and, for example, Microsoft Excel, I |

you can change the Column separator in the
Properties window of the list.

You can set the name of the CSV file and the column in which to store the contents of a list in the
list's Properties window under Save CSV file. The data are saved when the program terminates in
online mode, or, if you select the item Save CSV files in the File menu, while the program is still
running (online or download mode). In download mode, you can separate the ROBO Interface from
the PC for data recording and reconnect it for saving.

After you have executed the above program in online mode, you can open the .CSV file created
from the data by ROBO Pro in Microsoft Excel or some other spreadsheet program. If you don't
have a spreadsheet program, you can also use the Windows editor (Notepad), which you
will usually find in the windows Start menu under Accessories.

As long as the program is still running in online mode, you can also look at the data in a list by
right-clicking on the List element.

5.7 Operators

The illumination- and temperature-recording program worked well, but it became apparent from the
recorded data that the temperature in the exhibition space of the museum has nothing to do with
the sun. It has been established that some visitors have confused the airconditioning control in the
exhibition space with a model control, and have been busily tinkering around with it. No wonder the
temperature in the exhibition space has gone crazy!

But this problem can be easily avoided with an electronic combination lock. The combination lock
is to have a keypad with keys 1 to 6. If three figures are entered correctly one after another, the
combination lock should release the climate-control cover by means of a magnet.

fischertechnike=x

ROBOPro

At first sight, such a lock is quite simple: The program simply waits until

the right keys have been pressed in the right order. A program like this i
for the combination 3-5-2 can be seen on the right. But, on closer exam-
ination, this program has a problem. The lock can be quite easily picked, y

by pressing all keys from 1 to 6 three times in succession. In that way, j 13 '
the right key has always been pressed in every case. As Albert Einstein

put it so aptly: “Things should be made as simple as possible—but no

simpler.” So the program must enquire not only whether the right keys j 15 "
are pressed, but also whether any wrong keys are pressed. Now the

program looks like this: I 12 gt

M1 32

1=8

1s ¥
M1 E%

This program opens the lock only when the keys 3-5-2 are pressed without any other key being
pressed in between. If for example the key 3 is pressed, the program first waits until the key is
released again. If any key other than 5 is pressed next, the program starts again from the begin-
ning. So the program works correctly, but it is neither simple nor conspicuous. Moreover, itis very
difficult to change the code. But don’t worry; it can also be done simply and correctly, using opera-
tors. There are various sorts of operators. You will find them under Program elements in the
group Operators. For the combination lock, we first need an OR operator.

Several signals can be connected to the inputs of the OR operator. The operator

— A |= always yields 1 whenever at least one of the inputs is 1 (or >0). If several pushbut-
0 ton sensors are connected to the inputs of the OR operator, the output of

A T the operator is always 1 when at least one of the buttons is pressed. The number
of inputs can be set via the operator's Properties window to up to 26. So all 6 keys

can be connected to one operator. Perhaps you are asking yourself how we can use
this to simplify the combination lock? Quite simple: with the operator you can initially
wait in each step until any key is pressed. Then you can check whether it is the
right key. Then you need 2 rather than 7 program elements per digit.

fischertechnik==x

ROBOPro

/M &/

M 1 STOP

RN

\\/ » The buttons on inputs |1 to |6 are bundled together via an OR operator with 6 inputs. If at least one
= of the buttons is pressed, the OR operator yields an output value of 1; otherwise 0. With a Wait for
element, the program waits until one of the buttons is pressed. Following this, we test immediately
whether it was the right button. If so, we wait for another key to be pressed. Ifa wrong button was

pressed, the program starts again from the beginning.

Alter the above program so that it uses panel elements in a panel instead of pushbutton sensors.
Start by drawing a panel with 6 buttons marked 1 to 6. Then alter the digital inputs via the Proper-
ties window. You have to replace the branches by branches with data input and panel inputs.

The combination lock now functions without a hitch, but it is still not so easy to change the code (3
5 2). The inputs in three branch elements must be altered. It is not necessary to change the code
regularly for the museum’s airconditioning system, but if, for example, you were using the lock for
an alarm system, you would presumably want to change the combination regularly. Of course, it
would be easier if the code could be stored in a variable. The code could even be changed auto-
matically. If, for example, a silent alarm is set off in the alarm system, the normal combination
could be replaced by a special alarm combination.

In order to compare the combination variable with the input, you must also store the input itself in a
variable. In the beginning the input variable should have the value 0. When you now press the 3
key, the variable should have a value of 3, with the next keystroke on the 5 key a value of 35, and
finally after pressing the 2 key a value of 352.

ﬂ fischertechnike=x

ROBOPro

The combination lock with code variable has two processes. In the process on the left, a numberis N\ \ I/

assigned to each key with some times operators and a plus operator. The 1 key gets number 1,
the 2 key number 2, and so on. The keys return a value of 0 or 1, and if you multiply this value by a
fixed number X, a value of 0 or X results. As the values for unpressed keys are 0, you can add up
all the values and end up with the numerical key value. As soon as a key is pressed, the input
variable is set to 10 times the previous value plus the value of the key pressed. Multiplication by 10
shifts the existing value of the input variable one decimal place to the left (€.g. 35 becomes 350).

The process on the right waits until the OK key in the panel is pressed following input of the com-
bination. The code variable Code, which has the value 352 if the code is correctly entered,
is compared with the input variable. If they both have the same value, the opening magnet is
activated, not otherwise. Finally the input variable is reset to 0. The variables Entry and
Code are compared by comparing their difference with 0. You could also have use a Compare
element.

If you press two leys at the same time, the values of the keys are added. So, for example, if you
press 3 and 6 at the same time, the value 9 results. In this way you can build a super-secret lock,
in which sometimes several keys must be pressed at the same time. Think which keys in which
order you must press to open the lock with a code of 495. Don't forget that the Wait for ... element
continues the program when the value increases, not only when it changes from 0 to 1.

Does the combination lock also work for 2- or 4-digit codes? If so, up to what number of digits does
it work, and why? And what about the other combination lock programs?

fischertechnik==x

ROBOPro

6 Level 4: User defined commands

Remember to change ROBO Pro in the Menu Level to level 4 (or higher)!

In the level 3, you were extensively engaged in how you can process Data by means of commands
and you can, for example, steer motors. Thereby you used exclusively pre-defined commands like
the = command or the right, left and stop command. In Level 4, sending commands over orange
connections and using your own commands are now being linked with one another.

6.1 Processing of commands in a process

Surely, you have already written a program which controls a robot controlled via two wheels or a
tracked vehicle. All the same whether the vehicle is to run left, right, straight or backwards, you
must always give a right, left or stop command to two motors. And then you must always still note
which motor drives the left and which drives the right wheel and whether the motor must turn to the
left of or to the right, so that the vehicle drives forward. But a smart head as you has its head filled
with other things, ingenious ideas for example, and therefore cannot note such matters of minor
importance.

Naturally, this problem can be solved by applying subprograms for each operation, but it would be
still more elegant if you could write a subprogram, which, like a motor output, has an information
input, to which you then only need to send forward, backwards, left, right and stop commands and
then it controls two motors correctly.

Now you will surely argue that in the command element of ROBOPro there is in

fact a command to the left and one to the right, but no straight and no - back- “straigh
wards command. But the good old command element is again and again good 8
for a surprise. Create only for fun a new program, drag an arbitrary command

element into the main program and simply enter once “Forward" in the Charac-

teristic window, under Command. And you will observe... it works!

The next question is: what do you do with such an command element? Nevertheless, there is no
element which can process such commands. If you send, for example, the forward command to a
motor output and you try to start the program, ROBOPro will announce “No connected input can
process the Forward command®. Starting from the Level 4, there are two new quite inconspicuous,
however very efficient elements, which can process arbitrary commands: The “Command Wait"
element and the Command filter. You find both elements at the end of the Send, Receive element

group.

The task to develop a subprogram, through which a 2-wheel robot
may be controlled by means of the forward, backwards, right and left
commands, may be solved with both the elements. Let us try it first
with the nearby “Command Wait” element. You can send arbitrary
commands to this element over the command input C. However, the
element always only waits a completely determined command, which
you can adjust. After the element has received this command, the
program flux is branched to the Y output, otherwise to the N output.
As you know, there is an command in ROBOPro, consisting of a name and a number, the
command value. When the “Wait for Command” element has received the command it waits, the
command value is available at the V output.

fischertechnike=x

Therewith it is quite simple to make
the desired subprogram. In a con-
tinuous loop, every of the 5 possible
control commands is prompted with
one “Wait Command” element. After
an appropriate command has been
received, the command value is
passed on to the right and to the left
commands, which are sent to the
two motor outputs, M1 and M2. If the
subprogram receives, for example, a
“Var’ command with the value 8, the
value 8 of the V output of the com-
mand filter is passed on to two
command elements, which then
send to the two motors a Right
command with this value as speed.
As a matter of fact, it is not so practi-
cal to use here only one single Right
command element, which then sends
commands to both the motors. With
such constructions, it is often very
difficult to hold apart the two motor
command lines, so that then other
commands should often go to both
the engines.

In the example, the V output of the
Stop command filter is not connect-
ed, because the Stop command
elements need no value.

6.2 The command filter

ROBOPro

The task in the previous section can also be solved with the command filter. o

With the command filter, you can, to say so, rename commands. When a =
certain command is sent to the left input, the element sends another com-
mand to the elements which are connected to the right output, but with the

same command value as the command received at the input. Thus, you can make a motor control
command, for example from one = command, such as Right or Left. With the Command
filter, however, you can also convert, in particular, your own arbitrary commands to ROBOPro
standard commands, so that you can release an action with your own commands.

fischertechnik==x

ROBOPro

In the illustration at the right, you see -
how you can configure the sub- "{ e |] = M1)
Ao

program for controlling a 2-wheel
robot with the command filter. The
top command filter, for example,
converts the cw command to a =

command. The motor outputs can) 9
also process = commands with a
value from -8 to 8. Since with a
clockwise rotation to the right of
the model the two motors should .,,| straight
turn into different directions, the =
value of the = command for the

motor M2 is made negative with L g S
one - operator. On the contrary,

with the Left command, the value Sop
for the motor M1 becomes Stap
negative. Forward and backwards

are simpler, because both the

engines turn into the same direction.

You need not necessarily change the commands with the Command filter. The last command filter
has the Stop command as both Input and Output command. With this element, the Stop
commands are passed on directly to the motors. However, you need anyhow a command filter, so
that other commands, as cw or ccw, should not be sent directly to the motor outputs.

The great advantage of the command filter in relation to Wait at the Command element in the
previous section is that you need not a process. That saves memory space and processing occurs
immediately and not only with the next process change-over.

With the application of the command filter in this way, you must take care that you do not intermin-
gle the Data lines for the two motors. It is easiest, if, as in the picture above, all the final arrows
end on only one Data line. Sometimes it is also easier to use two command filters for a command,
so that you have two separate outputs.

With the program above, the robot tumns on the spot with the cw command. Try to change the
program in such a way that M1 moves and M2 stands. You need for that two command filters ~ for
the Right command. One converts the command into one = command, the other one into a stop
command. The command value is ignored with a stop command.

6.3 Sending arbitrary commands to subprograms

In the section 5.5 - Command inputs for subprograms pEEm——————— 2]
you have already known command inputs for sub

programs. However, you have connected there only "™ @
digital or analogue input elements to the command Passing mechanism
inputs. Such elements always send one = command, L Lot 080 o ot »

if the value of the input changes. If you would like to | 1 Commend = anl: the caler sende’= cammands
send another command to a command input of a
subprogram, you must indicate that in the ok Cancel
Characteristic window of the command input. Starting
from level 4, in the Characteristic window a new option,

" Any command: the caller may send any command

fischertechnike=x

ROBOPro

Passing mechanism, was added.

If you select Command ' =" only here, you can only send = commands to the appropriate inputofa \ \ ly
subprogram request. In addition, the last = command is automatically repeated, when the sub- ~
program starts. Otherwise, the subprogram input would not have the correct value when the sub-

program starts. Just imagine that a digital input element is connected to the subprogram input.

These elements only send commands if the value at the input of the interface changes. If now the

input is closed, the digital input element sends one = 1 command. When the subprogram is started

after the command was sent, it is important that the command is sent again, after the subprogram

is started. Otherwise the entrance would have a wrong value, until the element connected to the
subprogram input changes again its value.

But this transmission automatic can also be disturbing and is rather unwanted with most com-
mands. When you send, for example, one Start or a +1 command to a subprogram, as a rule, you
would not like that this should be repeated automatically. Therefore commands are not sent re-
peatedly, when you select the Any commands option.

Even if you send a = command to an Any Command input, the commands are not repeated
with the subprogram start. It may then occur that the value which the subprogram input
passes on should not correspond to the real value value at the input.

fischertechnik==x

ROBOPro

7 Controlling several Interfaces

One ROBO TX Controller is enough to control quite resource-intensive models. However, maybe
some people like things a bit more extensive. If you can't get by with the existing inputs and out-
puts, you can connect up to 8 additional ROBO TX Controller to your ROBO TX Controller via the 6
pin extension connector. For those who still use the earlier ROBO Interface, there is also the
possibility of controlling up to 3 ROBO Interfaces (each possibly with 3 1/0 extensions) in online
mode from your program.

7.1 Controlling Extensions

Perhaps you have already noticed the drop-down menu =
under Interface / Extension in the Properties windows for — “Z, " —

input and output elements. There you can select on which & §i & Motor

Interface or Extension Module an input or outputisto be | M2 € Lamp

found. Provided you haven't made any other settings (see M3 ¢ Solenoid valve
next Section), the list has the following entries: L : ;'::::magnet

i~ Interface / Extension—|

e |F1: This is the ROBO TX Controller which can be

IIF] j ’ACUUH |
connected to the PC as a so-called master. o oo
e EM1.EM3: These are the ROBO TX peiest) ¢ stop
Controller which are connected to the master as £ CE

extensions.
08 Cancel

So it is quite easy to control extension modules. You only
need to choose the desired Controller (master or exten-
sion 1-8) for inputs and outputs. The operating manual of your ROBO TX Controller explains how
to set up a ROBO TX Controller such that it will function as an extension.

7.2 TXT Controller, TX Controller and ROBO Interface together

If you want to control a ROBOTICS TXT Controller, a ROBO TX Controller and a ROBO Interface
simultaneously from one program, this only works in online mode. You can, for instance, connect a
ROBO TX Controller with 8 extensions to a USB port. In addition, you can connect a ROBO Inter-
face to COM1 or USB. This can include up to 3 ROBO /O extensions. If this is not enough for you,
you can use in addition a ROBOTICS TXT Controller, also with Extension. In order to define the
intended Interface in the Properties window of an input or output, you have to configure the Inter-
face assignment.

As long as you do not make different seftings, you will find the entries IF1, EM1-EM8 in the Inter-
face / Extension drop-down menu. But you can add to or modify this list. There can be several
reasons to do this:

e For greater comprehensibility you might want, rather than calling them IF1 or EM1, to give the
modules names which specify which part of your machine or your robot the module is control-
ling.

e You might want to exchange two extension modules (e.g. EM1 and EM2), for ease of cabling,
without changing your program.

e You might want to run a program, originally written for one ROBO TX Controller with more
than 3 extensions, by using several ROBO Interfaces.

fischertechnike=x

You can do all this quite easily by changing the Interface assignment in the Properties window of the

main program.

Main program |

ROBOPro

FunctiDnI Symbol | Panel I T¥ Display ~ Properties |Descr\ption
Name: IMaIn program r~Interface allocation

EM1 = Extension 1
EMZ = Extension 2
EM3 = Extension 3
EM4 = Extension 4
EMS = Extension 5
EM& = Extension &
EM7 = Extension 7
ENMg = Extension &

Group: |

& Automatic

Symbol generation:
’7("' Manual

Default placement:
% Dymamic
" Static

—
—

Minimurm number of processes:

Additional processes:

Min. memory per process (download): I 4096
I 65536

Min. memary per process {onling):

IF1 = Main Interface

| Edit

Delete

Here you can see which modules (master or exten-
sion) have been assigned to the names IF1 to EMS.
With the New button, you can add a new Interface. If
you want to change an entry in the list, you select it
and click on Edit. In either case, the following win-
dow is displayed:

e Under Name you can change the name
used for the module. The name shouldn’t be too
long, because the space for the Interface name
in the graphic symbol is very small. If you
change this name, then you must usually also
change the module name in all input and

output elements that use this name.

Under Extension you can specify whether the
name refers to an Interface or to one of the ex-
tension modules 1 to 8.

Under Port you can select the port to which the
interface is connected. If you pick User selec-

UISE Interface list:

2%

[Extension;

Main Interface - l

—Park

oML

O comz

| COM3

& COoMd

= 5B Bluetonth
! Simulation

(& User-selected

i~ Intetface

&' ROBO Ti Contraller
(" ROBO Interface
" Inkelligent Interface
' Auko-detect

-Remember Inberface:
(= By serial number:
{® By list arder

X

o]

Cancel |

tion here, the Interface used will be the one
you selected in the toolbar under COM/USB.

As long as you want to use only one ROBO TX Controller with several extension modules,
this is the simplest, because this way someone else can use your program unaltered. If you
are connecting additional ROBO Interfaces to your PC via USB, you specify here the port to

which the relevant Interface is connected.

Under Interface you can specify which Interface you would like to use. If you connect an

earlier ROBO Interface or Intelligent Interface via a serial port, the program can detect auto-
matically which type of Interface is involved (Automatic selection).

The right-hand part of the window is only important if you have connected different Interfaces

to the USB bus simultaneously. If, under Port, you click on USB, you can select one of the

Interfaces under USB Interface list.

fischertechnike

¥
TISE
COM/USB

ROBOPro

Caution: Unlike with the earlier ROBO Interface, only one ROBO TX Controller is connected
to a PC via USB or Bluetooth. To this so-called master you can connect up to 8 ROBO TX
Controllers as so-called extensions.

If you would like to operate more than one ROBO Interface on the USB bus, you must first
assign to each Interface its own serial number. By default, all ROBO Interfaces were supplied
with the same serial number, in order to void problems when exchanging Interfaces. The
Windows operating system, however, only detects Interfaces with different serial numbers.
You will learn more about this in Section 7.5 - Changing the ROBO Interface serial number on
page 73.

e Under Remember Interface you can specify how the program remembers the selected
Interface. There are two possibilities here: If you select By serial number, the program
stores the serial number of the ROBO Interface. Even if you connect other ROBO Interfaces
to the USB bus and remove them, the program can always find the selected Interface again
by means of the serial number. On the other hand, this has the disadvantage that the pro-
gram now only works with an Interface with the same serial number. If you would like to use
the program with an Interface with a different serial number, then you must change either the
Interface assignment or the serial number of the Interface. To get around problems with serial
numbers, there is a second possibility: By sequence. If you select this item, the program
stores the sequential order rather than the serial number. Although this can lead to confusion
if you add or remove Interfaces on the USB bus, the program will run unaltered with any In-
terface.

7.3 Interface assignments in subprograms

Normally you will make all the Interface assignments for your program in the Properties window of
the main program. However, you can also enter Interface assignments in subprograms. Then you
can use the Interface assignments from both the main program and the subprogram in the subpro-
gram. If two assignments have the same name, the assignment in the subprogram takes
precedence. So, for example, you can define IF1 as accessing the main Interface in the main
program, but standing for an extension module in a particular subprogram. This is very practical if
you want to control a whole machine park, with every machine controlled by its own Interface. This
way, you can develop the control programs for the individual machines as independent programs,
with every main program accessing IF1. Later, you can install all the machine main programs as
subprograms in one overall program. In the overall program you then need only modify the Inter-
face assignments, but not the name in each individual input and output.

fischertechnike=x

ROBOPro

7.4 TIpS and TrleS i Interface assignment
IF1 = COM1. ain interf;
If you want to run a program that was developed EMT = COMY, 17D astension
. . ERZ2 = COMZ, M ai f;
for a ROBO Interface with 3 extension modules on EH = COM . 40 ertensior

2 Intelligent Interfaces each with an extension
module, you can use the illustrated interface
assignment. This replaces extension modules 2
and 3 with a further Intelligent Interface with
extension module on COM2.

New | [CEd] Deete

7.5 Changing the ROBO Interface
serial number

By default, all ROBO Interfaces and ROBO I/O-Extensions were supplied with the same serial
number. As long as you only want to use one ROBO Interface on a computer, this is more practical,
because in this way all Interfaces look the same to the computer, and there will be no problems
with changing Interfaces. But if you want to operate more than one Interface on a computer via
USB, you must alter the serial number of the Interface beforehand, so that the computer can
distinguish between the Interfaces and address them. On the other hand, if you address the Inter-
faces via several serial ports, this is notnecessary.

The procedure for changing the serial number of an Interface is as follows:

e Connect the Interface singly to the computer's USB bus.

e In the toolbar, switch to the programming environment for the ROBO Interface by pressing
the button Environment.

1

e Press the COM/USB button in the toolbar and select the USB port. (el

e Now open the Interface test window with the Test button on the toolbar and switch to the Info
Tab.

fischertechnik==x

ROBOPro

Under Interface type the type of Interface, so, e.g.,
ROBO Interface or ROBO 1/O Extension, is dis-
played.

Under USB serial number you can set the serial
number used by the Interface at start-up. Every In-
terface has two built-in serial numbers, a default
serial number, which is 1 as long as you do not set
it to something else, and a unique serial number,
which you can't reset and which is different for eve-
ry Interface. The simplest way to use more than one
Interface on the USB bus is to set the selection but-
ton for each Interface onto Use unique serial
number. Then every Interface is guaranteed to
have its own unmistakable serial number. If you use
many Interfaces for one model, however, it can be
very impractical to remember all the serial numbers.
In this case it is simpler to set the default serial
numbers of your Interfaces to, for example, 1, 2, 3,
etc., and use these. After you have reset or select-
ed the serial number, you still have to press the
button Write to Interface. After changing the serial

Interface test

Interface | EM1 | EM2 | EM3 Info |

— Interface type:

IHobo Interface

—USE serial numnber:

Current serial number: |1
Default serial number: I
Unigue zerial number: |4888

& Use default serial number on startup
' Use unique serial number on startup

Wwirite to interface |

— Firmware update:

Firmware version: |1.35.D.03

Update from file |

— Eraze flazh memary

Eraze flazh 1 Eraze flash 2 |

number, you must power down the Interface and reconnect it.

Caution: If the serial number is changed, the driver may have to be re-installed, which re-
quires administrator privileges under Windows. If you change the serial number but can’t re-
install the driver, because you lack administrator privileges, you can no longer access the In-
terface via USB. In this case, you power down the Interface and hold down the Port button
while powering up again. Then the Interface will start with the serial number 1, and will once
again be recognized by the already installed driver. However, this does not
number permanently, i.e., on the next start-up without the Port button the previous serial
number will be restored. To reset the serial number permanently, you proceed as described
above.

reset the serial

Finally, under Update firmware, you can update the internal control program of your ROBO
Interface, if fischertechnik should ever offer a new version of the Interface firmware.

fischertechnike=x

8 Program element overview

ROBOPro

All the program elements available in ROBO Pro are arranged by element group in the following,

and described in the order in which they are depicted in the element window.

8.1 Basic elements (Level 1)

8.1.1 Start

A process in a program always starts with a Start element. Without this program
element at the beginning, a process is not executed. If a program contains sev-

eral processes, each of these processes must begin with a Start component. The

various processes are then started simultaneously.

A start element has no properties that you can alter. For this reason, if you right-click on this ele-
ment, unlike most other elements, no Properties window is opened.

8.1.2 End

If a process is to be terminated, the exit of the last element is connected to an
f End element. A process can also be terminated at various different places with
this element. There is also the possibility of linking the exits of different elements

to a single End component. But is also quite possible that a process is executed

as an endless loop and contains no End element.

The End element has no properties that you can alter. For this reason, if you right-click on this
component, unlike most other elements, no Properties window is opened.

8.1.3 Digital Branch

With this Branch you can

direct program control, ac-

cording to the state of one of

the digital inputs 11 to 18, in

one of two directions. If, for

example, a sensor on the
digital input is closed (=1), the program branches to
the 1 exit. On the other hand, if the input is open
(=0), the program branches to the 0 exit.

If you right-click on the element, the Properties
window is displayed:

e Buttons 11 to 18 allow you to enter which of
the universal inputs of the ROBO TX Control-
ler is to be queried.

e Buttons C1D-C4D allow you to select one of
the inputs C1-C4 of the ROBO TX Controller
as simple digital input.

fischertechnik==x

: 21
i~ Digital inpuk: Input mode: ——
o 15 Ccp COME | | oy

Cl2 (I8 CCb C M2E | | skohm

13 17 C3h M3E

C4 (I O 4D [MHE
~Interface [Extension

[=]
[~ Sensor bype:

IPushbutton suibch j
~Swap 1)0 branches

{* Leave 1/0 branches as they are

" Swap 1/0 branches

oK Cancel

ROBOPro

Buttons M1E-M4E allow you to query one of these four internal ROBO Pro inputs. They are
set to 1 as soon as a motor that is controlled by an Extended Motor Control element reach-
es a preset position.

Under Interface / Extension you can select whether you want to use an input of the Inter-
face or an input of an extension module. You can find out more about this in Chapter 7 -
Controlling several Interfaces

Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch. Normally the 1 exit is below and the 0 exit is on the right. But often it's more
practical to have the 1 exit on the right. Press Interchange 1/0 connections and then the two
connections will be interchanged as soon as you close the window with OK.

8.1.4 Analog Branch

As well as the digital inputs, the | e 20X
ROBO Interface has 6 Analog i ioqinpu: —
inputs: 2 resistance inputs AX CH s o 1oy
and AY, two voltage inputs A1 FE s &5
and A1, as well as two inputs for CB O1w £ Ulkrzsonts
distances sensors D1 and D2. |© ™ ©®
With this Branch you cancom- [Interfare | Extension
pare the value of an analog input with a fixed number and, fF1 =
according to the result of the comparison, branch to the Yes “cersor types
(Y) or NO (N) eXIt' INTC resiskar j
If.you right-click on the element, the Properties window is ———
dlsplayed: Analag valus m IU—
e Under Analog input, you can select which one of the E————
universal inputs of the ROBO TX Controller is to be O lzmre Wl Ends o by e
quel’ied, = Swap fM branches
e Under Interface / Extension you can select whether o | conel |
you wish to use an input of the Interface or an input of

an extension module or of another Interface. You can
find further information about the various analog inputs in Chapter 7 - Controlling several
Interfaces

Under Sensor type you select the sensor connected to the input. ROBO Pro selects the
Input mode of the universal input automatically according to the selected sensor. In Level 4
and above you can also select the Input type independent of the sensor.

Sensor Input mode Displayed value
NTC resistor, Analog 5kOhm 0-5000 Ohm
photoresistor

Color sensor Analog10V 0-10000 mV

fischertechnike=x

ROBOPro

Ultrasound dis-
tance senor
(Version TX, item
number 133009
with 3 pin cable)

Distance 3-400 cm

You can find further information about the various analog inputs in Section 8.7.2 - Counter

input on page 103.

Under Condition you can select a comparison operator such as less than (<) or greater than
(>) and enter the comparison value. The comparison value should lie in the range from 0 to
1023. When you start a program containing a Branch for analog inputs in online mode, the
current analog value is displayed.

Under Interchange Y/N connections you can exchange the position of the Y and N exits of
the Branch. Normally the Yes (Y) exit is below and the No (N) exit is on the right. But often it's
more practical to have the Yes exit on the right. Press Interchange Y/N connections and the

Y and N connections are swapped as soon as you close the window with OK.

8.1.5 Time delay

|
1s ¥
I
If you right-click on the element the Properties
window is displayed. Here you can enter the time delay in seconds,
minutes or hours. The time delay can be set over a range from one
millisecond (that's one thousandth of a second) to 500 hours (that's
just under three weeks). However, the time measurement becomes
less accurate with longer time delays.

With the Time delay element you can delay the
continued execution of a process by a period you
can set.

The following list shows the accuracy for various time delays.

Time delay Accuracy

Up to 30 seconds | 1/1000 second

Up to 5 minutes | 1/100 second

Up to 50 minutes | 1/10 second

Upto 8.3 hours |1 second

Up to 83 hours | 10 second

Up to 500 hours | 1 minute
8.1.6 Motor output

Time delay

x|

Time: I

Time Linit:

{* 1z [second]
=1 min [minute]
= 1h [har]

Ok Cancel |

With the program element Motor output you can switch one of the

Interface’s

/M B/

two-pole outputs M1-M4. The outputs from
Interface can be used for motors as well as for lamps or

the

electromagnets. With a motor, you would like to be able to set the

speed as well as the direction of rotation.

fischertechnik==x

ROBOPro

If you right-click on the element, the Properties window is

displayed: ! x
— batar output: ~ Image:
e Under Motor output you can set which of the four & §i £ Motor
motor outputs M1 to M4 should be used. oMz s
M3 " Salencid valve
e Under Interface / Extension you can select whether M4 ¢ Elechiomagnet
you want to use an output of the Interface or an out- | eace 7 Extension— |-
put of an extension module or of another Interface. [IF = ;
. . r— Action:
You can find out more about this in Chapter 7 - Con- - oo
trolling several Interfaces [Speed 1.81 Stop
. E :
e Under Image you can select an image to represent &
the fischertechnik component connected to the out- x | ¢
t ancel |
put.

e Under Action you set how the output is to be affect-
ed. You can run a motor to the left (counterclockwise) or to the right (clockwise) or stop it. If
you connect a lamp to a motor output (see tip under Lamp output), you can turn it on or off.

e Finally, you can specify a Speed or Intensity between 1 and 8. 8 is the greatest speed,
brightness, or magnetic field strength; 1 the least. In the case of stopping or switching off, you
naturally do not need to specify a speed.

Here are listed some action symbols and images.

[T [T/ /w%@

Motor rlght cw) Motor left (ccw) Stop motor
M1 |v|1
V=7

Lampon Lamp off

Tip: Sometimes even a motor is only operated in one direction, e.g. for a conveyor belt. In this
case you can use a lamp output for the motor, so as to use one connection less.

8.1.7 Encoder Motor (Level 1)

The program element Encoder Motor is available from Level 1 on and

W1 allows comfortable control of motors with a built-in pulse generator or
W2 encoder.
W=0 D=0

fischertechnike=x

ROBOPro

With this element you can either move a single motor
a preset number of pulses or move two motors simul-

== Advanced motor control x|

taneously, with or without specifying a distance. If you [%= [inkerface fEdtensen
click on the element your left mouse button, the |~ i z
property window will be displayed: oM #ctian
. . M (" Distance
e Under Action you select whether you would like " Synchranous
to move one motor a specified distance (Dis- (= Synchranaus distance
. —Maotor oukput 2:
tance), two motors with the same speed B € Stop
(Synchron) or two motors a specified distance . Direction 1:
with the same speed (Synchron Distance). To & me @ooow oo
cancel any of these actions and to stop the mo- £

" Direction 2:
tor, select the action Stop. L L: cow C ow

e Under Motor output 1/2 you select the motor | speedit..én Distance (1,,32767):
outputs which the action will affect. Depending E [0 —‘
on the action you can select one or two motors.

e Under Interface / Extension you can select o | _ e |

whether you would like to use an output of the

master or an output of an extension module. If the action controls two motors, both motor
outputs must be of the same Interface. You will find more information in Chapter 7 -
Controlling several Interfaces

e Under Direction 1/2 you set the direction in which the motors will move.

e Under Speed you enter the speed of the motors. If two motors are controlled, the speed of
both motors is the same.

o Finally, under Distance you can enter the number of encoder pulses you would like the
motor(s) to move.

You will find more information on using this element in Section 12.6.1 - Encoder Motor (Level 1)
on page 136.

8.1.8 Lamp output (Level 2)

With the Lamp output program element you can switch one of the
single-pole outputs 01-08 of the ROBO TX Controller. The outputs
can be used either in pairs as motor outputs (see above) or individual-
ly as lamp outputs 01-O8. Unlike motor output, lamp outputs only take
up one connection pin. That way you can control 8 lamps or ~ solenoid
valves separately. You connect the other lamp contact with the one of the ground sockets of the
ROBO TX Controller (L).

Tip: If you only wish to connect four lamps or motors, you can also use motor outputs for
lamps. This is more practical, because in this way you can connect both lamp connections
directly to the Interface output, rather than having to connect all the negative terminals sepa-
rately to one of the ground sockets.

fischertechnik==x

ROBOPro

If you right-click on the element, the Properties window is

displayed: x|
~ Lamp output: ~Image:
e Under Lamp output you can set which of the four & @f € 05 (Mator]
02 08 {* Lamp
motor outputs O1 to O8 should be used. L Gl

e Under Interface / Extension you can select whether

you want to use an output of the Interface or an out- —ierace s Extension— |~
put of an extension module or of another Interface. & =
You will learn more about this in Chapter 7 - Control- o
ling several Interfaces [Intensity (18—

8 oif

e Under Image you can select an image to represent
the fischertechnik component connected to the out-
put.

e Under Action you set how the output is to be affect-
ed. You can switch a lamp on or off.

04 ¢ 08

" Electromagnet

o |

Cancel

o Finally, you can also specify an Intensity between 1 and 8. 8 is the greatest brightness; 1 the
least. In the case of switching off, you naturally do not need to specify an intensity.

Here are listed the symbols for the various actions for the Lamp image.

1 L
Nl VAVASE
=7
Lampon Lamp off
8.1.9 Wait forinput
The Wait for Input element prerymrm x|
waits until one of the Inter- rwatfar:
face's inputs is in a !
particular state or until it & BT
changes in a particular way. £ b et
If you right-click on the element, the Properties window ~Digkal nput Input madei ——
Is displayed: s |
e Under Wait for you can select the type of change ?ii ;Z ;SE g:ii
or the state to be waited for. If you select 1 or 0, R E—
the element waits until the input is closed (1) or “H =1
open (0). If you choose 0 -> 1or1 ->0, the ele- F—
ment waits until the state of the input changes %pushbu&mm =
from open to closed (0->1) or from closed to open
(1->0). In the last case, the element waits until the [[==

state of the input changes, regardless of whether
it's from open to closed or vice versa. To help you understand this further, it is explained in
Section 3.6 - Other program elements how you can emulate this element with the Branch
element.

fischertechnike=x

ROBOPro

Under Digital input you may enter which one of the inputs is to be queried. You can select
one of the universal inputs 11-18. The other inputs are described in Section 8.3.1 - Digital
Branch

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find out more about this
in Chapter 7 - Controlling several Interfaces

Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

8.1.10 Pulse counter

robots also use pulse wheels. "= Lo
These gear wheels operate a o

wheels you can turn a motor on for a precisely defined 1ov0(raimgy | 0t Ut (CID-CHD) and
: : : - d k the Fast
number of r.evolutlons rather than for a given time. To do & 0w tordoed hgf;ﬁ;;j:un;,jﬂhesle
this, you need to count the number of pulses at el e Ly i s e
i i mokar commands anly.
an input of the Interface. For this purpose I ——————— OB
there is the Pulse counter element, which #n OB Ccp Cal i
waits for a user-definable number of pulses. Cr €. D £ Shofim

Many fischertechnik model pugrmmpmmrn 21

sensor four times for every

revolution. With these pulse [Pulse type: Attention! This Pulse counter
£ 0->1(rising) element uses C1-C4 as

T 17 cb
T B D

Note: There is a spezial element to control encoder
motors which slows down the motors in time and
therefore works more precisely. See section 8.1.7 -
En coder Motor (Level 1) on page 78.

r~Interface | Extension

1

=

[Sensor bype:

If you right-click on the element, the Properties window is

IPushbutton swikch j

Ok | Cancel |

displayed:

fischertechnik==x

Under Pulse type you can select the type of pulse to be counted. If you choose 0 -> 1 (rising),
the element waits until the state of the input has changed from open to closed (0->1) the
number of times you have specified under Number of pulses. If you choose 1 -> 0 (falling),
the element waits until the state of the input changes from closed to open (1->0) the specified
number of times. With pulse wheels, however, the third possibility is used more often. Here
the element counts both 0 -> 1 and 1 -> 0 changes, so that 8 pulses are counted per revolu-
tion of a pulse wheel.

Under Digital input you may enter which one of the inputs is to be queried. You can select
one of the universal inputs 11-18. C1D-C4D selects one of the counter inputs. However, this
does not make use of a fast hardware counter. Nevertheless, the maximum count frequency
is several 100 Hz.

ROBOPro

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Controlling several Interfaces

Under Sensor type you can select the sensor connected to the input. Digital inputs are
mostly used with push-button sensors, but often also with phototransistors or reed contacts.
ROBO Pro selects the Input mode of the universal input automatically according to the se-
lected sensor. In Level 4 and above you can also select the Input type independent of the
sensor.

8.1.11 Counter loop

If you right-click on the element, the Properties window is displayed:

With the Counter loop element you can very easily have a part of the
program executed several times. The Counter loop element has a built-
in counter. If the counter loop is entered via the =1 entry, the counter is
set to 1. If the counter loop is entered via the +1 entry, 1 is added to the
counter. According to whether the counter is greater than a value you
have prescribed, the counter loop branches to the Yes (Y) or No (N)
exit. You will find an example for this in Section 3.6.4 - Counter loop.

== Counter loop x|
Under Number of iterations you enter the number of times the ~ [toen caunt:

counter loop is to be exited via the No (N) exit before the Yes [T

(Y) exit is activated. The value you enter should be positive. — Swap YiN branches

If you click on Interchange Y/N connections, the Y and N | =are itieenesesiver =
connections will be changed over as soon as you close the win-

dow with OK. According to where the Y and N connections are, o | cona |
the program section to be repeated will be to the right of or un-
der the counter loop.

8.1.12 Sound

You can use the Sound element to play sounds that are saved as .wav

02-Alarm files on the ROBOTICS TXT Controller. Right-click on the element with
repeat=1 wait your mouse to view the properties window:

You can select from the available sounds | play sound]
under Sound. You can listen to samples | =

| sound: |02-Alarm - '

of the sounds using the touch display ||
menu under Test — Sound. |¥at it sound s fiokehed:H1F!
]‘Repealcount: 1

If the box next to Wait until sound is

finished is selected, the program will wait || Use a repeat count of 0 for unlimited repeat.
; L . \ =3

until the sound has finished playing before || oo [cancs]

continuing.

@

For the repeat count you can specify the
number of times the sound will be played in a row. Enter 0 if you want it to play in an infinite
loop.

fischertechnike=x

ROBOPro

8.2 Send, Receive (Level 2-4)

In this element group, you find program items which you can use for sending and receiving mes-
sages over the ROBO RF DATA Link or over the serial interface of the ROBO interface.

8.2.1 Sender (Level2)

With the transmitter you can send a command or, fairly generally, a

message, via Bluetooth (in case of the ROBO Interface via the ROBO
RF Data Link) to another interface. In this way, for example, several

Properties window for the transmitter element %]
rsendcommand: ————————— |
e Under Send command, you can enter the command and Please note: wwhen you use & custom
starting from level 3 the Command value. A command e L L
consists of a name and a numerical value. The numerical G e Gl
value can also be determined over a Data input. With E] |
command names, which are not selected from the list, on- Command valus: |
ly the first 3 letters or numbers are considered. You can I™" Use datainput for command value
indicate more than three characters, but “Hello, Destination interface | element:
“Help” and “helicopter” stand all for the same message, (% Send to interface with
because all begin with Hel'. Large and lower case and Radia call umber: [0
special characters (blank!? , % and the like) are likewise " Send to al interfaces
not differentiated. XY! And XY? stand also for the same —patatype:
message. Numbers are however differentiated, so that (% Inkeger -32767,.32757
XY1 and XY2 are different messages. (" Floating paint 43bit
e Under Destination interface/element, you can select to o | canel |
which interface or program element must be sent the

fischertechnik==x

robots can communicate with one another.

command. In most cases, you will send an command to

an interface with a certain radio call number or to all interfaces. Starting from level 4, there
is additionally the possibility to use a group between 10 and 255 as receiver address. Com-
mands to a group are not sent to a certain interface with a certain radio call number, but to
receiver elements in which the same group number is indicated. Thus you can, for example,
differentiate from whom a message was sent, by using another group for each transmitter.
The group numbers begin with 10, because the numbers 0 to 9 are reserved. Your leamn
more about the reserved group numbers with the Receiver element.

Under transmit channel, you adjust how the message should be transmitted purely techni-
cally. In the level 2, this selection is not available and it is always transmitted by ~ RF (not
including self). By RF means that the message is sent via Bluetooth (ROBO RF Data Link). If
RF (including self) is selected, the message is also sent to the interface which has sent the
message. In order that it functions, under Destination interface/element a destination must be
selected which includes the sending interface, consequently, for example, to all interfaces or
to a group of receivers. You can also send a message only to the sending interface itself. You
can use this function, for example, for communication between different processes.
Starting from level 4, the ROBO Interface also supports sending commands over the serial
COM interface of the ROBO interface. For this purpose, you must connect two interfaces
with a serial null-modem cable.

ROBOPro

Under optimization (starting from level 4) you can adjust whether identical commands
should be sent several times. With many commands, it does not make a difference whether
you send the command once or several times after one another. Without optimization, for ex-
ample, commands sent several times after one another fill the transmission buffer of RF Data
Link, so that other commands cannot be sent so quickly. Therefore it is reasonable to delete
identical commands. As a rule, you will be willing to delete an command if only it is identical
to the last buffered command. If you send in this mode, for example, 2x Start and then 2x
Stop, only 1x Start and then 1x Stop is transmitted. If you however send Start, Stop, Start
and Stop fast after one another, consequently not two times the same command after one
another, the commands are transmitted unchanged. However, you can also indicate that
commands should to be deleted if they are identical to any buffered command. On the
contrary, with many commands the optimization is not reasonable and the normal mode
should be used. An example for that is the Add command, with which you can add elements
to a list. With a list, it finally makes a difference whether an element 1x or 2x is added. In the
level 2, the option delete if identical to the last buffered command is always selected.

Under Data type you can select whether the value of the sent command is a whole number
or a floating point number. Also see Chapter 13 - Working with decimals on page 140.

8.2.2 Receiver (Branch when command is received, Level 2)

This element is the counterpart to the preceding transmitter element.
Depending on whether a certain command was received or not, the
element is branched to the J or to the N output.

fischertechnike=x

ROBOPro

Properties window for the Receiver element

e Under Receive command, you enter the command which
the receiver should receive. As already explained with the
transmitter, only the first 3 letters or numbers of the name
are considered. Then you must still select whether the re- E] =l
ceiver only reacts to commands which were Sent directly | oo trcs a o o e i

to the interface, consequently with a certain radio call | et SRR s usedto

number, or to commands which were sent to all interfaces. [[——

You can also select both. As already described with the I~ sent ta group:

transmitter, starting from the level 4, you can send mes- [t

sages also to a certain group. Such messages are ¥ sent ta all nterfaces

received by all receiver elements with which this group Y,

was indicated. The groups 10 to 255 can be used arbi- L— Listen on serial COM port

trarily. The groups 0 to 8 correspond to the radio call

. . Buffer storage bype: ———————————
numbers 0 to 8. The group 9 is reserved for sending to all ¢ Loca

interfaces. When sending messages, it does not make a & clobal

difference whether you send to the group 1 or to the radio —c,ap v branches

call number 1. But for receiving you cannot indicate a ra- | # teave ¥/t branches as they are

dio call number, because each interface knows its own " Swap YN branches

radio call number. By indicating a group of receivers from o]

1 to 8 for the receiver, you can however receive messag- =

es, which were actually meant for another interface. But

groups of receivers smaller than 10 you can only use starting from level 5.

e Under Serial COM port (starting from level 4, only ROBO Interface), you can indicate that the
element can receive also messages from the COM interface. Here it is a matter of a glob- al
adjustment whether the COM interface should be activated or not. When in a program one
single transmitter or receiver uses the COM interface, all receiver elements can receive mes-
sages from the COM interface.

e Under Type of buffer you can specify whether the memory area in which received com-
mands are stored is local or global. If you select global, the element can also receive
commands when the subprogram in which the element lies is notactive.

e Under swap Y/N branches, you can interchange the position of the Y and N outputs of the
branching. Normally, (Y) is the Yes output down and the No (N) output on the right. Often it is
however more practically if the Yes output is on the right. Press the swap Y/N branches, then
the Y and N connections are exchanged, as soon as you close the window with OK.

== Branch if command x|

r~Receive command:

Cancel

8.2.3 Receiver (Level 3)

D The receiver element described in the previous section is mainly meant for
D }))I — the level 2, since it can only receive commands, but no command values.
The level 3 receiver element receives, on the contrary, arbitrary commands
with command value. You do not indicate with this element any command
which the receiver element should receive. The element sends fairly easily all the received com-
mands to the elements connected to the output.

fischertechnike==x

ROBOPro

Properties window for the Transmitter element

Under Receive command, you indicate whether the receiver
only reacts to commands which were sent directly to the inter-
face, consequently with a certain radio call number, orto
commands which were sent to all interfaces. Starting from the
level 4, you can also select a certain group. You learn more
about groups of receivers in the two previous sections 8.2.1 -
Sender (Level2) and 8.2.2 - Receiver (Branch when command
is receiv Level 2). As with the level 2 Transmitter, with the

Recelver

" sent to all interfaces

"Recelve commands:

Serial COM Part
’7|_ Listen on setial COM port

Cancel |

level 3 transmitter, you can select only one option. You can however connect the outputs of
two or several receiver elements with different selection, if you want to receive commands
with different destination Data. In particular, you can also switch so receivers with different

groups.

Under Serial COM port (starting from level 4), you can indicate that the element can also
receive messages from the COM interface. See thereto the previous section 8.2.2 -

Receiver (Branch when command is received, Level 2).

8.2.4 Wait for command (Level 4)

The Wait for Command element is used similarly as the Receiver
(Branch when command is received, Level 2), for waiting a com-
mand. However, it does not wait for commands which are sent by
ROBO RF Data Link or other interfaces, but for commands which are
sent to the command input on the left side of the element. If you
connect a Receiver (Level 3)_element there, a level 2 receiver results.
However, this element has additionally a Data output on the
right side. Always when an command has been received and so the program flux is led to the J
output, the numerical value sent with the command is available at the command value output W.
Since the W and J output belong together, you cannot exchange the J and N outputs for this
element. You will find an example in Section 6.1 - on page 66.

Properties window for the “Wait for command” element

Under Command, you select the command for which the
element should wait. You can also enter an own command,
whereat however only first 3 letters or numbers are considered.
See for that the description under Send command in the Sec-
tion 8.2.1 - Sender (Level2) on page 83.

The buffer size of the command buffer is only indicated start-
ing from level 5. As the level 2 receiver, this element notes how
many commands have been received. Since waiting at the

=== Wait for comm:

Command: I H i I

Buffer storage bype:

{* Local
 Glohal

[V Let ROBO Pro decide

2=

oK |

Cancel

command element must also note the command value for each command, the maximum
number of commands is here however limited. For usual applications, the standard value of 4
commands should be completely sufficient, since a program command received is mostly, as

much as possible, processed immediately.

fischertechnike=x

ROBOPro

8.2.5 Command Filter (Level 4)

With the command filter, you can, so to say, re-label commands. When a
= certain command is sent to the left outlet, the element sends another com-
mand to the elements which are connected to the right output, but with the
same command value as the command received at the output. Thus you can
make, for example, a motor command from one = command, such as Right or Left. You may find
an example in the Section 6.2 on page 67.

Properties window for the Command filter element

= Command filter ﬂll
In the Command filter element you select two commands: the — _ m =

command which is expected at the input and the command con-
verted into this command and sent to the output. You can alsp = cemmandeut
enter your own command, whereby however only the first 3 letters rata type:

= -

or numbers are considered. See thereto the description under Send | & Integer -32767..52767
command in the Section 8.2.1 - Sender (Level2) on page 83. Under | © Mestinapeint 4asi
Data type you can select whether the value of the com- mand (sent o pe—
or received) is a whole number or a floating point number. Also see
Chapter 13 - Working with decimals on page 140.

8.2.6 Exchange Message (Level 4)

Similar to the way the command filter exchanges the name of a command

—-B
(see previous section), this element exchanges the value. In conjunction with
i the command filter this allows you to take one message and generate several
different messages with different values. For example, if you would like to

program a control for a track vehicle so it will understand commands like “left’,
“right” or “forward”, you can convert the command “left* into a “=" command to the motor element
using the command filter. In addition, with this element you can replace the value of the “=" com-
mand by 0 or the negative value and send it to the other motor. The command whose value is to
be exchanged is sent to the B input. You place the new value in the W input.

Property window for the Exchange message element

= Exchange mes ﬂﬂ
e Under Input variable life time you can select whether the W [[Tnpue verizble Fe fne:
input stores the value in a local or global variable. ': FELRUBCIFrG delde
+ Local
e Under Data type you can select whether the value of the " Global
command (sent or received) is a whole number or a floating .,

point number. Also see Chapter 13 - Working with decimals on (G TSy ST S
page 140. ' Floating poink 43kt

ok | Caniel |

8.2.7 I°C Write (Level 4)

This element sends commands or data to the TX controller 12C inter-

face. The I2C interface is available at the EXT2 port. The standard 12C
0%34<-0x56 interface can also be used to connect sensors and actuators from
other manufacturers (not fischertechnik) to the TX controller. Use of the

12C interface requires experience with use of electronic components
and corresponding measuring instruments.

fischertechnik==x

ROBOPro

Subroutines for various, frequently used 12C modules are available in the element window under
Library / 12C. You can open the library files directly as ROBO Pro programs. The main library
program contains a test routine for the module in question. The library files are presentin
the ROBO Pro installation directory under Library / 12C.

The 12C Write element sends an address byte with 1 to 4 data bytes over the I2C interface. First
the 7-bit device address is sent and then the write bit. Then a 0-2 byte long sub-address and finally
1 or 2 data bytes are sent. From the vantage point of the 12C protocol, there is no difference be-
tween the sub-address and data. However many 12C modules require that, following the device
address, a sub-address be sent first before sending the data. The precise protocol is given in the
data sheet for the 12C module.

Properties Window for I°C Write Element I

e For the Device address enter the 7-bit device ad- Device acdress [
dress (without R/W bit). The address is specified as b address |0
an 8bit address (with R/W bit) for some devices. In

ata iny I~
such cases it is necessary to divide the address by 2; ot —
for example 0x60 instead of 0xCO. Bata value "
The device addresses 0x50..0x57 (=0xA0...0xAF as Sub addresssize [3 bit -
8-bit) are used internally by the TX controller and R |
cannot be used for external modules.

. Speed |4DDkHz -
e Under Sub address you can enter an 8 or 16-bit sub-

address. See also Sub address size below. Erorhanding [Repeatuntisuccesstl]

Keep open r

e Under Data input you can select whether the data is
fixed and specified further down under Data value or ok | concel |
if the element is to use a datainput.

e Under Data value you can enter the data value to be sent, when a data input is not used.

e Under Sub address size you can select whether a sub-address is to be used. Notall [12C
modules use sub-addresses so that it is also possible to enter none under Sub address size.
If you use a 16-bit sub-address, you can select whether the MSB (=Most Significant Byte) or
LSB (=Least Significant Byte) is to be transferredfirst.

e Under Data size you can select whether the element sends 8 or 16 bit data to the 12C module.
With 16-bit data, you can select whether the MSB or LSB is to be transferred first, as with
sub-addresses.

e Under Speed you can select the 12C clock speed. This can be 100kHz or 400kHz. When all
connected |12C modules support 400kHz, you should use 400kHz, otherwise 100kHz.

e Under Error handling you can select what happens when the connected 12C modules cannot
process the data properly. You can select between Repeat until successful, Repeat 10
times or abort immediately. In the case of the last two options, the element at the bottom
right is provided with an additional error output.

e When keep open is checked, the element does not send a stop over the 12C bus at the end.
This allows further data to be written or read with an additional 12C write or I2C read element.
If read and write operations are not accomplished alternately or a read command with sub-
address executed, the device address of the following 12C elements is not sent again. A re-
start is accomplished on the 12C bus to change over between read and write operations; not a
stop/start sequence. The 12C bus remains reserved for the current process, until an 12C ele-

fischertechnike=x

ROBOPro

ment performs the current process without the option "keep open". Other processes are disa-
bled, if they use the 12C element.

8.2.8 I°C Read (Level 4)

This element reads the data from the TX controller I2C interface. The

12C 0x12 comments regarding the 12C write element also apply for this element
0x34->8bit

When a sub-address is used, the 12C Read element first sends an
address byte in the write mode and then the 1or2 byte long sub-

address. The element then performs a restart on the 12C bus, sends the device address again, this
time in the read mode, and then reads the 1-2 data bytes. If a sub-address is not used, the ad-
dress byte is sent immediately in the read mode and the data then read.

Properties Window for 1°C Read Element x|

For the Device address enter the 7-bit device ad- Device address 1]
dress (without R/W bit). The address is specified as b address |00
an 8-bit address (with R/W bit) for some devices. In

such cases it is necessary to divide the address by 2; ~ S®aéeressee st =

for example 0x60 instead of 0xCO. Data size |

The device addresses 0x50..0x57 (=0xAO0...0xAF as Speed Frra—

8-bit) are used internally by the TX controller and

cannot be used for external modules. Brorhending [Repest unti succesit 7]
Keep open r

Under Sub address you can enter an 8 or 16-bit sub-
address. See also Sub address size below. ok | comcel |

Under Sub address size you can select whether a

sub-address is to be used. Not all 2C modules use sub-addresses so that it is also possible
to enter none under Sub address size. If you use a 16-bit sub-address, you can select
whether the MSB (=Most Significant Byte) or LSB (=Least Significant Byte) is to be trans-
ferred first.

Under Data size you can select whether the element reads 8 or 16 bit data from the 12C
module. With 16-bit data, you can select whether the MSB or LSB is to be read first, as with
sub-addresses.

Under Speed you can select the 12C clock speed. This can be100kHz or 400kHz. When all
connected 12C modules support 400kHz, you should use 400kHz, otherwise 100kHz.

Under Error handling you can select what happens when the connected 12C modules cannot
process the data properly. You can select between Repeat until successful, Repeat 10
times and abort immediately. In the case of the last two options, the element at the bottom
right is provided with an additional error output.

The option Keep open has the same effect as with the 12C Write element

8.3 Subprogram I/O (Level 2-3)

In this element group you will find program elements that you only need for subprograms.

fischertechnike==x

ROBOPro

8.3.1 Subprogram entry (Level 2)

A subprogram can have one or more Subprogram entries. The main program or
the higher-level subprogram passes control to the subprogram via these entries.

In the subprogram’s green symbol that is inserted into the higher-level program,

one connecting pin for each Subprogram entry is inserted on the upper side. The
connections on the symbol have the same sequence (left to right) as the Subprogram entries in the
subprogram’s functional plan. If you right-click on the element the Properties window is displayed.
There you can give the entry a name, which will then be displayed in the symbol. You can find out
more about subprograms in Chapter 4 - Level 2: Working with subprograms on page 28.

8.3.2 Subprogram exit (Level 2)

A subprogram can have one or more Subprogram exits. The subprogram passes
Ex, the control back to the main program or higher-level subprogram via these exits.
Exit In the subprogram’s green symbol that is inserted into the higher-level program,

one connecting pin for each Subprogram exit is inserted on the lower side. The
connections on the symbol have the same sequence (left to right) as the Subprogram exits in the
subprogram’s functional plan. If you right-click on the element the Properties window is displayed.
There you can give the exit a name, which will then be displayed in the symbol. You can find out
more about subprograms in Chapter 4 - Level 2: Working with subprograms on page 28.

8.3.3 Subprogram command input (Level 3)

Via this element, subprograms can be linked to input elements such as switch-
@- es in the main program or higher-level subprogram, or supplied from there with

values from variable elements, e.g. co-ordinates. In the subprogram’s green

symbol thatis inserted into the higher-level program, one connecting pin for
each Subprogram command input is inserted on the left side. The connections on the symbol have
the same sequence (top to bottom) as the Subprogram command inputs in the
subprogram’s functional plan. There is a thorough explanation of the use of this element in Section
5.5 - Command inputs for subprograms

Property window

= Subprogram data input 21

e Under Name you can enter the name for the
command input. Only the first two characters are
displayed in the green subprogram symbol. & Ttosm 2757, 2767

Under Data type you can select whether the (" Floating point 48bit

Mame:

value of the received command is a whole num- e —
ber or a floating point number. Also see Chapter ™ Lt ROBO Pro decide
13 - Working with decimals on page 140. ' Command '=" only: the caller sends '=' commands

= any command: the caller may send any command

Under Passing mechanism (Level 4 and above)
you can select whether the input accepts only “= ok | concel |
commands or arbitrary commands. If variables
or Interface inputs are connected to the input

in the subprogram call, you should select only “=" commands. In this case the subprogram
input stores the lastly transmitted value, making the correct value available immediately when
the subprogram is started. If you select arbitrary commands, you can also send com-
mands like stop or own commands to the input. These commands will only be forwarded to

fischertechnike=x

ROBOPro

the subprogram if the subprogram is active. This makes sense when the subprogram con-
tains a motor element, for example, and you would like to send commands to this element
from outside. You will find more information in section 6.3 Sending arbitrary commands to
subprograms on page 68.

8.3.4 Subprogram command output (Level 3)

Via this element commands such as left, right, stop can be sent to motors or
other output elements in the main program or in the higher-level subprogram.
In the subprogram’s green symbol that is inserted into the higher-level pro-
gram, one connecting pin for each Subprogram command input is inserted on
the right side. The connections on the symbol have the same sequence (top to bottom) as the
Subprogram command inputs in the subprogram’s functional plan. There is a thorough explanation

of the use of this element in Section 5.5 - Command inputs for subprograms

Property window
perty R

e Under Name you can enter the name for the command output. —
Only the first two characters are displayed in the green subpro- S
gram symbol. F. i

* Integer -32767..32767
e Under Data type you can select whether the value of the sent " Floating point 48bit
command is a whole number or a floating point number. Also
see Chapter 12 - Working with decimals on page 140. R

8.4 Variable, List, ... (Level 3)

Program elements in this group can store one or more numerical values. They allow you to devel-
op programs with a memory.

8.4.1 Variable (global)

Var A variable can store an ir_1divid_ua| numerical vgalue between -32767 and
= - — 32767. The value of the variable is set by connecting an = Command ele-
ment to the command input on the left-hand side (see Section8.5.1 =
(Assignment) on page 97). Via the Properties window, one can also give the
variable an initial value, which the variable will retain until it receives the first command altering the
value.

ROBO Pro creates only one variable for all variable elements with the same name and Variable
type = Global. All global variables with the same name are identical and always have the same
value, even if they occur in different subprograms. When one of these variable elements is altered
via a command, all other variables with the same name are changed too. There are also local
variables (see next section) to which this doesn’t apply.

As well as the = command, a variable also understands + and — commands. So, for example, if a
variable receives the command + 5, it adds the value 5 to its current value. In the case of the —
command, the value communicated with the command is subtracted from the variable’s current
value.

Caution:
If in a +or — command the value of a variable goes outside the allowable range of values, 65536 is

fischertechnik==x

ROBOPro

added to or subtracted from the value of the variable to bring it back in the valid range. As this
behavior is normally unwelcome, you should make sure that this does not happen.

Every time the value of the variable changes, it sends an = command with the new value to all
elements connected to the command output of the variable. If you want to monitor the value of a
variable, you can connect a panel display to the output of the variable (see section 8.7.6 Panel
input on page 107).

Here is a compendium of all the commands that the Variable element can process.

Command | Value Action

= -32767 to Sets the value of the variable to the value passed with the com-
32767 mand.

+ -32767 to Adds the value passed with the command to the current value of
32767 the variable.

- -32767 to Subtracts the value passed with the command from the current
32767 value of the variable.

Incidentally, the odd value range of -32767 to 32767 results from computers calculating in the
binary system, and not in the decimal system as we do. In the binary system 32767 is a round
number, a bit like 9999 in the decimal system. But we don't need to worry about this, as the com-
puter converts all the numbers from the binary to the decimal system. We only notice anything in
the maximum values and when there is an overflow in calculations.

Properties window for variables.

== Yariables x|
e Under Name you can enter a name for the variable. T -

e Under Initial value you can enter an initial value for the O
variable. The variable retains this value until it gets a new

. Data bype:
value via an =, +, or —command.

% Inkeger -32767..32767

e Under Data type you can select whether the value of the (" Fioating point 48bit
variable is a whole number or a floating point number. Also - Lie time:
see Chapter 13 - Working with decimals on page 140. Local

e The Life time item is only significant for variables in sub- :;Ef:j;riablesbynm
programs, and is more precisely explained in the following

section, “Local variables”. In the case of variables in the oK | Cancel |
main program, both settings have the same effect.

8.4.2 Local variables

L All global variable elements with the same name use one and the same
Var . ,
= 0 — variable and always have the same value. That is presumably what you
expect and what is generally practical. But if you use variables in subpro-
grams, that can lead to big problems. If your program has more than one
parallel process, multiple instances of a subprogram can be being executed at a time. In this kind
of situation, it usually leads to chaos if the program uses the same variables in all processes. For
this reason there are local variables. A local variable behaves almost exactly like a global variable,
with one difference: the local variable is only valid in the subprogram in which it is defined. Even if
two local variables in separate subprograms have the same name, they are distinct, independent

fischertechnike=x

ROBOPro

variables. Even if one program is being executed in parallel by several processes, the subprogram
in each process has an independent set of local variables. Local variables exist only as long as the
subprogram in which they are defined is being executed. Therefore local variables are not as-
signed their initial values at program start, but rather every time the relevant subprogram is started.
As a subprogram is supposed to do the same thing every time if it is called more than once, it is
much more practical if the variables are set to their initial values at each call. Local variables have,
so to speak, no memory of previous calls of the same subprogram.

In the main program, local and global variables behave in the same way, as the overall program
and the main program are started at the same time. However, local variable are somewhat more
efficient in program execution. On the other hand, list elements should rather be defined globally,
because the storage area for global variables is bigger than for local variables.

8.4.3 Constant

Like a variable, a constant has a value, but this value
II" cannot be altered by the program. You can link a

constant with a data input of a subprogram symbol, if
the subprogram is to use the same value at all times. Constants are £ Floating point 48bit
also very practical for calculations with operators. You will find an
example of this at the end of Section 5.7 - Operators. .

(84 | Cancel |

== Constank

Property window for constant

e Under Data type you can select whether the value of the
constant is a whole number or a floating point number. Also see Chapter 13 Working with
decimals on page 140.

e Under “Value” you enter the value of the constant required.

8.4.4 Timer variable

A timer variable behaves essentially just like a variable. Even the distinction
=tx 10ms Z]— between normal and static variables exists with timer variables. The only

difference is that a timer variable counts down the stored value at fixed time
intervals until it reaches 0. Once the timer value reaches zero, it stays there.

If the timer value becomes negative, e.g. through a minus command, the value retumns to 0 at the
next time step.

The rate at which a timer variable counts down can be set between 1/1000 second per step and 1
minute per step in the Properties window. In doing so, you should observe that the accuracy of the
timer depends on the time steps set. If, for example you set a time on 1 x 10 seconds, the next
time step can take place a short time later (e.g. as soon as one second), or not until 10 seconds
later. So timers are only as precise as the time steps set. Therefore, you should prefer to select
small time steps, for example 10 x 1 second or 100 x 0.1 seconds rather than 1 x 10 seconds. You
should only select a time step of a minute if the program is to wait at least an hour. Then, one
minute more or less is not going to make much difference.

The number of steps to be counted down is generally assigned to the
L timer via an = command from a command element. In the example
‘ = 10%1 10ms Z|—
T

= illustrated, 100 steps of 10ms each are counted down. This
corresponds to a duration of 1000ms=1 second. The precision of

fischertechnike==x

ROBOPro

this is 10ms.

Timer variables enable you to solve even difficult time measurement and delay problems easily.
For example, if a robot is to discontinue a search after 20 seconds, you can set a timer variable on
20 x 1 seconds (or 200 x 0.1s) at the beginning of the search, and then query regularly in the
search program whether the timer value is still greater than 0. You can also reset the timer toiits
starting value where there is partial success in the search.

If you want to measure a time, the timer variable should initially be set to the biggest possible
positive value (30000 or 32767), so that there is a lot of time left before the timer value reaches 0.
If you want to know how much time has passed since then, you subtract the current timer value
from the initial value.

Properties window for timer variables x|
e Under Delay you can determine an initial value for the timer e I
variable. As a rule, you will enter 0 here, and set the value of I
the timer variable with an = command at the appropriate time. B0 @M @
But if the timer is supposed to start running at the start of the ®is @il @i
program or of a subprogram, the corresponding value can be
entered here.

i~ Timer wariable type:
+ Local

e Under Time unit you can select the size of the time steps at " Static
which the timer variable will be counted down.

e Under Timer variable type you can set whether the timer is a
global or a local variable (see Section 8.4.2 - Local variables o | ceneel |
on page 92).

8.4.5 List
The List element corresponds to a variable in which one may store not just
—1s R = one but several values. The maximum number of values that can be stored in
list a variable is determined in the Properties window.
— You can append values to the end of the list or remove values at the end of

the list. You can also change or read any value in the list or exchange any
value in the list with the first value in the list. A value cannot be inserted in the middle or the begin-
ning of the list directly. But you can write an appropriate subprogram that will perform these
functions.

The following functions of a list are used by sending commands to the W (for write) input. The
following commands can be sent to the W input:

Command | Value | Action

Append [-32767 |Appends the value passed with the command to the end of the list. The
[100] |to list gets bigger by one element. If the list already is at its maximum size,
Y
32767 | the command is ignored.

Delete Oto Deletes the given number of elements from the end of the list. The value
32767 | communicated with the command is the number of elements to be
deleted. If the number is greater than the number of elements in the list,

fischertechnike=x

ROBOPro

all elements are deleted. If the number is 0 or negative, the command is
ignored.
Exchange [0 to Exchanges the given element with the first element in the list. The value
:y 32767 | passed with the command is the position number of the element to be
[3%—* exchanged.

Via the | (for Index) input, a specific element of the list can be selected. To do this, you send an =
command to the I input with the desired element number. The first element is element number 0.
Another value can be assigned to the element selected via the | input by sending an = command
with the desired value to the W input.

The element selected via the | input can be queried via the R (readout) output. If the I input, or the
value of the entry selected by the | input, changes, the list sends the current value of the selected
entry to those elements connected to the Routput.

Via the | output you can query whether the index defined at the | input is valid. If N is the number of
elements, a value between 0 and N-1 must be present at the | input. If this is the case, the | output
sends an = command with the value N, in any other case with value 0, to all connected elements.

Properties window for lists

21x
e Under Name you can enter a name for ‘=
th e ||St Maximum size [100
Tnitial size; [0
e Under Maximum size you can enter | il vabess:
the maximum number of elements on Ao
the list. This size cannot be exceeded Sgpend
by Append commands. setal
e Under Initial size you enter the number [o=z |
of elements with which the list is to be =zl oo |
initialized at start time. [Load from .CSU e
. e | Browse...
o Under List of initial Values YOU CBN | - uaruncsris o oms it st
enter the initial values to be pre- sewcorne
assigned to the list. With the buttons to I i = | Brovse...
the right of the list you can edit thelist. Lz oS Fo i ey
e Under Load from .CSV file you can rwstdatatvue: _ |
Se|eCt an EXCeI'COmpatlble CSV flle % Integer -32767..32767 (Floating point 43bit
. . . List data life time:
from which the list should take its val- {F e D] I Lk by e
ues. In the selection field in the middle = —
you can choose the column of the .CSV

file to be used for this purpose. The file

is loaded straight away and displayed under List of initial values. When you start the pro-
gram or perform a download, ROBO Pro will try once more to load the current values from
the file. If this is not successful, the values stored under List of initial values are used.

e Under Save to .CSV file you can specify a file to which the contents of the list should be
saved after the program ends. This works, however, only in online mode and only for static
lists (see next point). The contents of the list are written in the selected column of the file.
Under Column separator you can select whether the individual columns in the list should be
separated with commas or semicolons. In countries where 0.5 is written with a period, a

fischertechnik==x

ROBOPro

comma should normally be used as the column separator. As people write 0,5 with a comma
in Germany, in Germany a semicolon is also often used as a column separator. If you have
problems importing a ROBO Pro CSV file into, for example, Microsoft Excel, try a different
column separator.

e Under List data type you can select whether the list contains whole numbers or floating point
numbers. Also see Chapter 13 Working with decimals on page 140.

e Under List data life time you can set whether the list elements are global or local variables
(see Section 8.4.2 - Local variables on page 92). For large lists (with a maximum size over
100 elements) type Global is to be recommended, because more memory is available for
global variables than for local variables.

8.5 Commands (Level 3)

All program elements in this group are command elements. Depending on

the application they may also referred to as message elements. When the

command element is executed (i.e. when the flow of control passes into the

blue entry at the top of the element), the command element sends a com-

mand or a message to the element connected to the output on its right.

There are various commands like right, left or stop, which have different effects on the connected
element. As a rule, the connected elements understand only a few commands. The commands
each program element understands and the effects of these commands are listed alongside the
various program elements. Most commands are also accompanied by a value. With a right com-
mand for example, one specifies also a speed between 1 and 8. A stop command, on the other
hand, has no additional value.

Properties window for command elements

21 x|
e Under Command you can select the desired command S E|
from a list of all possible commands. e C—

e Under Value you enter the numerical value that should be N
. . Description of value: I
passed with the command. If no value is to be passed,
this field remains empty. Sl
+ Integer -32767, 32767

e Under Value description you can enter a short indicative " Floating point 4shit
text (e.g. X= or T=), which will be displayed in the com-
mand element with the value. The text should make clear
what sort of value is involved. But this serves only as a P =
comment, and has no other function.

e Under Data type you can select whether the value of the command is a whole number or a
floating point number. Also see Chapter 13 - Working with decimals on page 140.

e Under Data input for command value you can specify whether the command element is to
have an orange data input on its left for the value to be passed. With all command elements,
the value can either be entered directly in the command element or read in through a data in-
put on the left side of the command element. In this way a motor, for example, can be
controlled in a servo loop with a variable speed.

[Datainput for command value

fischertechnike=x

ROBOPro

8.5.1 = (Assignment)

The = command assigns a value to the receiver. As a rule, it is used to
4=0 assign a value to variables, timer variables, list elements or panel outputs.

But the = command is sent not only by command elements, but by all pro-
gram elements with data outputs. All elements send = commands when the
value of an output is altered. A Digital input element, for example, sends an =1 command when a
sensor on the input is closed and an =0 command when the sensor is opened. But no command
element is used to do this. Program elements with data outputs have, so to speak, = command
elements built in.

All ROBO Pro program element data inputs can process at least the = command. This makes the =
command the most frequently used command in ROBO Pro.

8.5.2 + (Plus)

The + command is send to a variable or a timer variable to increase the value
of the variable. Any desired value can be passed with the + command, and
will be added to the variable. As the value passed with the command can
also be negative, the value of the variable can also be decreased by this
command. See Section 8.4.1 - Variable on page 91 and Section 8.4.4 —
Timer variable on page 93.

@

[ee]
o1
w

— (Minus)

The — command is used similarly to the +command described above.
The only difference is that value passed with the command is subtracted
from the value of the variable.

Q

oo
(6)]
~
Y
«Q
=3
=

The Right command is sent to motor output elements to switch on the ele-
ment with clockwise rotation. See Section 8.7.4 - Motor output on page 105.

&

The value is a speed from 1 to 8.

8.5.5 Left

The Left command is sent to motor output elements to switch the motor onin
a counterclockwise direction. See Section 8.7.4 - Motor output on page 105.

The value is a speed from 1 to 8.

8.5.6 Stop

The Stop command is sent to a motor output element to stop the motor. See
Section 8.7.4 - Motor output on page 105.

s

No value is passed with the Stop command.

fischertechnik==x

ROBOPro

8

57 On
The On command is sent to a lamp output element to switch the lamp on.
| 0 8 See Section 8.7.5 - Lamp output on page 106. An On command can also be
sent to a motor output element; it corresponds to the Right command. For

motors, however, it is better to use the Right command, as the direction of
rotation is then directly recognizable.

The value is the brightness or intensity, from 1to 8.

8.5.8 Off

The Off command is sent to a lamp output element to switch the lamp off.
| © > See Section 8.7.5 - Lamp output on page 106. An Off command can also be

sent to a motor output element; it corresponds to the Stop command.

No value is passed with the Off command.

8.5.9 Text
The Text command is a special command in that it doesn’'t send a
Text command with a number, but rather a text of your choice, to the con-
nected element. However, there is only one program element that can
process the Text command, and that is a text display in a panel. You will

find further information in Section 9.1.2 - Text display on page 121.

8.5.10 Append value

The Append command is a special command for list elements. See Section
8.4.5 - List on page 94. The command is accompanied by a value, which is
appended to the end of the list. If the list is already full, the command is
ignored.

8.5.11 Delete value(s)
The Delete command is a special command for list elements. See Section
8.4.5 - List on page 94. With this command, any number of elements can be
deleted from the end of the list. The desired number is passed with the
command as a value. If the value passed is greater than the number of

&>
elements in the list, all the elements in the list are deleted. In order to delete

a list entirely, a Delete command with the maximum possible value of 32767 can be sent.

fischertechnike=x

ROBOPro

8.5.12 Exchange values

The Exchange command is a special command for list elements. See Sec-
“'“I; 1 tion 8.4.5 - List on page 94. With this command, any element of a list can be
i exchanged with the first element. The number of the element to be ex-
changed with the first element is passed with the command as a value.
Important: the first element of a list has the number 0. If the value passed is
not a valid element number, the list element will ignore the command.

8.6 Compare, wait for, ... (Level 3)

The program elements in this group all serve for branching of program control or for delaying the
continued running of the program.

8.6.1 Branch (with datainput)

This program branch has an
orange data input A on the

i~ Condition:

left of the element. Via this, a put vaue S =] [0

value is read in, which often
comes from an input element [-patatype:
(see Sections 8.7.1 to 8.7.6 (¥ Integer -32767. 32767
from page 102) The data = Floating point 48bit
input A can also be linked to data outputs from variables, -suan vt branches
timer variables or operators (see Section 8.8 - Operators on (¥ Leave '/t branches as they are
page 109. The element compares the value at the data (" Swap ¥/M branches
input A with a fixed, but freely definable value. According to
whether the comparison holds or not, the element branches
to the Y or to the N exit.

oK Cancel

Properties window for the Branch

e Under Condition in the right-hand field you enter a value which is to be compared with the
input value A. The usual comparison operators are available for the comparison.

e Under Data type you can select whether the received value is a whole number or a floating
point number. Also see Chapter 13 - Working with decimals on page 140.

e If you select Interchange Y/N connections, the Y and N exits are exchanged as soon as you
close the Properties window with OK. To return the Y/N connections to their initial positions,
you can exchange them again.

The most commonly used comparison is A>0. That means that control branches to the Y exit if the
value present at data input A is greater than 0. For example, digital inputs, which delivera1 or 0
value, can be evaluated in this way. But also timer variables and many other values can meaning-
fully be evaluated with the comparison A>0.

fischertechnik==x

ROBOPro

8.6.2 Comparison with fixed value

With the program element Comparison with fixed value, the value in
A A’)O the data input A can be compared with a fixed, but freely definable
< = > value. According to the value present at the data input A is greater

| | | than, less than, or equal to the fixed value, the comparison element

branches to the right, left or middle exit. As a rule, the output of a

variable or a list is connected to the data input A. The Compare element may be replaced by two

Branch elements. In many cases, however, it makes for greater understandability if only one
element is needed.

X
Camparisan value: Im

Ok Cancel |

Note: This element does not exist for floating point numbers since floating point numbers are
prone to rounding errors. Therefore it might not be reasonable to ask whether two values are
exactly the same. You can do a two-way comparison with a program branch. See Section
8.6.1 - Branch (with data input) on page 99.

Properties window for Compare

e Under Comparison value you can enter the constant value with which the value at input A is
to be compared.

8.6.3 Compare

With the Compare program element, the two values at the data inputs
A and B may be compared with one another. Depending on whether
A is less than B, A is greater than B, or A equals B, the
element branches to the left, right, or middle exit. The most common
application for this is the comparison of a nominal value with an actual
value. According to where the nominal value lies in relation to the
actual value, then, for example, a motor can turn left or right or be
stopped.

The Compare program element has no options to be set, and therefore no Properties window.

Note: This element does not exist for floating point numbers since floating point numbers are
prone to rounding errors. Therefore it might not be reasonable to ask whether two values are
exactly the same. You can do a two-way comparison with a comparative operator. See Sec-
tion 8.8.2 - Comparative operators (relational operators) on page 110 and Section 8.6.1 -
Branch (with data input) on page 99.

fischertechnike=x

ROBOPro

8.6.4 Time delay

1 With this element, a Time delay can be programmed into a procedure. The time
1,00 Z delay starts when the element has its turmn to be executed. As soon as the en-
s
1

tered time delay is expired, the program continues running. See also ~ Section
3.6.1 - Time delay on page 22.

Properties window for Time delay: x|
e Under Time you can enter the time delay. You can even use Time: [
decimal fractions like 1.23. Tie urit

e Under Time unit you can select seconds, minutes or hours as (‘: f::;:i:ﬂe]
the unit of time. The time unit has, unlike the case for timer vari- | ~ 3,/
ables, no influence on the accuracy of the time delay. A time
delay of 60 seconds and a time delay of 1 minute behave in ex- oK Cancel

actly the same way.

In Expert mode (Level 5) an expanded Properties window is displayed, which is more like the
Properties window for timer variables.

8.6.5 Wait for...
1 | 1 | | The Wait for... program element holds up
| _1 | n | J | N program execution until a change has
; taken place or a specific state has been
| | | I I reached in the data input of the element.

The element comes in five varieties: The
element on the left waits until the value in the input has increased. For this purpose, not only
changes from 0 to 1, but any increase, say for example from 2 to 3, will count. The second element
waits until the value in the input has decreased, and the element in the middle waits for any
change, regardless of direction. The third element is often used for pulse wheels. The fourth and
fifth elements wait, not for a change, but for the state Yes (>0) or No (<=0) in the input. If the
relevant state is already present, the element doesn't wait. The first three elements, on the other
hand, always wait until a change is detected in theinput.

Properties window for Wait for change
P) I

e Under Type of change you can choose between the five functions Watlor
described above. @

!
e |f the button Detect changes when not active is pressed, the - D_”[Dnlsing]
element also detects changes that took place when the element was € 15 0 faling]
not due to be executed. In this case, the element saves the last C 0310150
known value. When the element is executed again, it continues pro-
gram execution immediately if the value has changed in the right
way in the interim. In this way, there is less probability of missing a oK. Cancel
change, because the program just happened to be doing something

™ Detect changes when inactive

else.

fischertechnik==x

ROBOPro

8.6.6 Pulse counter

| | L This program element waits for a definable

N=| | N= N= number of pulses at the data input on the

7 10 10 | 10 left side before it continues program execu-
I I | tion. This is very practical for simple

positioning tasks with pulse wheels. For
more demanding positioning, e.g. with a variable value, subprograms with variables must be used.

Properties window for Pulse counter

X
e Under Number of pulses you enter the number of pulses to be | Number of pulses:

waited for before program execution is continued.
e Under Pulse type you can select between the three types of ~ Pulse type:

pulses: 0-1, 1-0 or any change. £ 0 1 (rising)

1= 0(faling]

The possibility of recognizing changes when the element is not active, F 0 Tals0
as can be done with the simple Wait for ..., is not available for this
element. _ ok | taed |

8.7 Interface inputs/outputs

This group of program elements contains all input and output elements. How to use these
elements is explained in Section 4.4 - Level 3: Variables, panels & Co.

8.7.1 Universal input

I The TX Controller has 8 universal inputs 11-18 which can be used as digital
| Z — oranalog inputs. You can connect buttons and any sensor from the current
IF1 fischertechnik line of products to these inputs.

fischertechnike=z

Properties window for universal inputs:

inputs are selected under Interface / Extension. FU O ooy © &y
2 s @ psk Ciask
e Under Sensor type you can select the sensor P P
connected to the input. o

Under Universal input you may select which of the
Interface’s inputs is to be used. Extension module

Under Input mode you select whether the input is

an analog or digital input and whether it reacts to [Pushbustean switch =l
voltage or resistance or whether it is connected to

an ultrasound distance sensor. You will learn more

in Section 11.5 - Universal inputs, sensor type and ~ interfacs ; Extension

in- put mode on page 135. ROBOPro automatically [iF1 =

determines the input mode depending on the con-
nected sensor. In Level 4 and above you can also
select the input mode independently. For example,

ROBOPro

niversal inpuk: Input made:

Counter | Motar I Panel I TaLA I 4

21x|

[~ Sensar kype:

i~ Connection

¥ Local: only when Function is entered
" Static: always bound

this makes sense in the case of a phototransistor.
For phototransistors ROBOPro sets the input mode
to digital 5kOhm (D 5k). This way, you can use the
phototransistor in conjunction with a lens lamp as a
light barrier that is either interrupted (= 0) or closed
(= 1). However, if you select the input mode analog 5kOhm (A 5k) for the photoresistor, you
can differentiate between many shades of light and dark.

" Cbject: when ohject is created
¥ Let ROBO Pro decide

[8]4 | Caniel |

o Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Controlling several Interfaces

e Under Connection you can select whether the input is always connected or only when the
subprogram containing the input is run. This only makes a difference if other global elements
such as global variables and operators are connected to the input in a subprogram.

On closer examination, there is only one type of program element for all types of inputs. You can
switch input times at any time via the tabs at the top of the Properties window. This is particularly
useful for switching between switch, IR and panel inputs.

8.7.2 Counter input

ci1ce In addition to the 8 universal inputs 11-18 the TX Controller offers 4 counter

i1 | inputs C1-C4. You can only connect digital sensors and the encoders of

encoder motors to counter inputs. For every counter input such as input C1

there are two different counter inputs such as C1C and C1D in ROBO Pro. The input C1D

behaves like a regular digital input. However, the input C1C counts the number of pulses received

by input C1. You can reset the counter by sending a reset command to the respective motor

element. The counters are used to control encoder motors and must be used for other purposes
only if no encoder motor is connected to the respective motor output (for example, M1 for C1).

fischertechnik==x

ROBOPro

Properties window for Counter inputs:

Under Counter input you can select the desired
counter or digital input.

Under Image you can select an image of the sensor
connected to the input.

Under Interface / Extension you can select whether
you wish to use an input of the Interface or an input
of an extension module or of another Interface. You
will learn more about this in Chapter 7 - Controlling
several Interfaces

Under Connection you can select whether the input
is always connected or only when the subprogram
containing the input is run. This only makes a differ-
ence if other global elements such as global
variables and operators are connected to the input
in a subprogram.

It again becomes clear on the Properties window for
counter inputs that for all inputs ROBO Pro uses a single
element, which can be switched between input types
through the tabs. For simplicity, however, separate input elements are available ready for selection
in the element window.

8.7.3

Motor position reached

M1E

IF1

page 137.

o toput
I Motor | Panel | e vl

Universal

[~ Counter input:
% ClCounter C1Digital

 cec " ceD
Cac C3D
(el <ls " caD

gl I3

rImage:

IPushhuttnn switch

i~ Interface | Extensian

[1F1

[~ Connection

Local: only when Function is entered

€ Static: abways bound

" Object: when object is created

[V Let ROBO Pro decide

OK |

fischertechnike=x

These inputs are not real inputs but logical inputs to control encoder motors.
You will learn more in Section 11.6.2 - Extended Motor Control in Level 3 on

ROBOPro

Property window for motor inputs:
[toout 21x]

e Under Motor control input you can select which Universal | Counter IF Panel | e ¥
motor you would like to query the position reached Matar contral input:

Signal for. {* Position reached 1 ¢~ Debug 1

. i Positi hed 2 ¢ Debug 2
e Under Interface / Extension you can select whether et D:bﬂz :

you wish to use an input of the Interface or an input Position reached 4 € Debug 4
of an extension module or of another Interface. You
will learn more about this in Chapter 7 - Controlling
several Interfaces

e Under Connection you can select whether the input
is always connected or only when the subprogram [interface ; Extension
containing the input is run. This only makes a differ- [iF1 |
ence if other global elements such as global
variables and operators are connected to the input
in a subprogram.

i~ Connection
¥ Local: only when Function is entered
" Static: always bound
" Cbject: when ohject is created

874 MOtOI’ OUtpUt ¥ Let ROEO Pro decide
M1 The Motor output element allows ot || [s |
—jl one of the 4 two-pole motor out-
IF1 puts of a ROBO Interface or an Intelligent Interface to be controlled. A

motor output always uses two Interface connections, whereas a lamp output
only uses one connection. You can find out more about the difference between motor and lamp
outputs in Section 8.1.6 - Motor output and Section 8.1.8 - Lamp output (level 2).

A command must be sent via a command element to a motor output in order to switch the output.
A motor element can process the followingcommands:

Command | Value |Action

Right 110 8 | The motor turns clockwise with a speed of 1 to 8

Left 1108 | The motor turns counterclockwise with a speed of 110 8
Stop none | The motor stops

On 1108 |As for Right

Off none | As for Stop

= -8 to 8 | Value -1 to -8: the motor turns counterclockwise
Value 1 to 8: the motor turns clockwise
Value 0: the motor stops

In addition, a motor element can receive commands for extended motor control (synchronous,
distance, reset), as explained in Section 11.6.2 - Extended Motor Control in Level 3 on page 137.

fischertechnik==x

ROBOPro

Properties window for Motor elements;

e Under Motor output you can select which of the Interface’s ~ EFMMEMELELE 2]
output connections are to be used. You can select extension [Mt et (Em'”“””
f Ol |V H * §steps
module outputs under Interface / Extension. o & s

e Under Resolution you can select whether you would like to M
control the intensity of the output in 8 steps (1-8) or in 512 Gl

StepS (1'512) r~Interface [Extension

e Under Interface / Extension you can select whether you = =l
want to use an output of the Interface or an output of an ex- jage————
tension module or of another Interface. You will learn more [ietar =
about this in Chapter 7 - Controlling several Interfaces

e Under Image you can select an image of the load connected ok | concel |

to the output. In most cases this will be a motor. But you can
also connect an electromagnet, a solenoid valve or a lamp to a motor output.

8.7.5 Lamp output

O1 The Lamp output element allows one of the 8 single-pole lamp outputs O1-
- é 08 of a ROBO |Interface or an Intelligent Interface to be controlled. A lamp
IF1 output only ever uses one output connection of the Interface. The other
connection of the load device is connected to the ground socket. You can
only switch on or off a load device connected in this way; you can't reverse its polarity. You can
learn more about the difference in Section 8.1.6 - Motor output and Section 8.1.8 - Lamp output
Level 2).

A command that switches the output must be sent via a command element to a lamp element. A
Lamp element can process the following commands:

Command | Value | Action

On 1to 8 | The lamp is switched on with a brightness of 1to 8

Off none |The lamp is switched off

= 0to 8 | Value 1 to 8: the lamp is switched on
Value 0: the lamp is switched off

fischertechnike=x

Properties window for lamp output elements:

8.7.6

ROBOPro

Under Lamp output you can select which of the Interface’s output connections is to be used.

You can select extension module inputs under Interface /Extension.

Under Resolution you can select whether you would like to control the

intensity of the output in 8 steps (1-8) orin 512 steps (1-512).
Under Interface / Extension you can select whether you want to

an output of the Interface or an output of an extension module or of an-
other Interface. You will learn more about this in Chapter 7 - Controlling

several Interfaces

Under Image you can select an image of the load device connected to fF1

the output. In most case this will be a lamp. But you can also connect
an electromagnet, a solenoid valve or even a motor to a lamp output.
But a motor connected to a lamp output can only ever rotate in one di-

rection.

Panel input

Bedienfeld
ABC

Eingang

<= Lamp output 2xl
i~ Lamp output: Resolution —
* 1 (05 || % 8steps

use 0z 06 || 512 steps

03 o7

o4 o8

~Interface | Extension

~Image:
ILamp j

Ok |

Cancel |

ROBO Pro offers you the possibility of designing your own panels for your
— models. You can learn more about this in Chapter 8.9 - Panel elements and
panels: overview on page 114. This makes it convenient for you to control

your models from the computer. Push buttons, slider controls and data
entry elements are available for use in a panel. The state of these elements can be queried in the
program via the Panel input element. Push buttons return a value of 0 or 1. Slider controls return a

value in a user-definable range (by default, 0 to100).

Panels can only be used in online mode. You can find out more about this in Section 3.7 - Online

and download operation-what's the difference?

Properties window for Panel inputs:

One panel is associated with each main program or subprogram.
The panel elements are listed under the name of the respective
program. If you have not yet defined any panel elements, then
no elements will appear in the list. So you must first design the
panel before you can link a panel input with a panelelement.

The selection under Interface / Extension is ignored in the
case of panel input, as we are not dealing here with actual
inputs on an Interface module.

8.7.7 Panel Output
~—— Panel ROBO Pro offers you the possibility of
=\ Display designing your own panels for your

models. You can learn more about this in
Chapter 8.9 Panel elements and panels:

Select a button or slider from panel:

= =t Main program -
Ml open
-l close
- M straight
- M back
I
il down
-l et
-l vight
LM speed Jid|

[

Interface [Extension
[tF1 |

Connection
' Local: only when Function is entered
" Static: always bound

" Ohject: when object is created

[Let ROBO Pro decids

Ok | Cancel

x|

overview on page 114. Alongside push buttons and other input elements to control your model,

fischertechnik==x

ROBOPro

you can also insert display elements in your panel. In these display elements you can display, for
example, the axis coordinates of a robot or the state of an end switch. You alter the value to be
displayed by inserting a Panel output element in your program and sending the element an =
command, e.g. by connecting a variable, an analog input or a command element to it.

Panels can only be used in online mode. You will learn more about this in Section 3.7 - Online and
download operation-what's the difference?

Properties window for Panel displays:

== Panel display llﬂ
One panel belongs to every main program or subprogram. Panel | T3 Display
Panel displays are listed under the name of the respective Select a display o meter from panel:
programs. If you haye not yet.establllshed any panel e!ements, I 28 Vi program
then no elements will appear in the list. So you must first draw - Positon
the panel before you can link a panel input to a panel element. i volkage
Ok I Cancel

8.7.8 Cameralnput

ROBO Pro version 4.x and higher supports the fischertechnik USB
Camera_ camera. In the Camera window (see Chapter 11) you can add camera
Input sensor fields with which you can detect colors, motion, lines or balls.
You can query any value of the sensor fields in the program using the
Camera Input element Camera Input properties dialog box The Camera Input properties dialog box
contains a list of input boxes for all camera sensor fields that have been added to the program’s
Camera window. If you have not yet added any sensor fields, this list is empty.

You can read about the type of input boxes made available by particular sensor fields in Chapter
13

8.7.9 IR Input (TXT Controller)

The ROBOTICS TXT Controller features an integrated infrared
. L X | receiver for fischertechnik Control Set transmitters (item number
500881). This allows you to use the transmitter to activate a robot
IF1 model remotely using infrared or to activate any functions in a

model. The IR remote control transmitter features two buttons
that you can move up, down, left and right from the neutral position. The value of the neutral
position is 0. When you move the button, the values will be from 1 to 15 in each direction (15 =

maximum travel). You can use the IR input to import the values and process them in the ROBOPro
program.

fischertechnike=x

IR input properties window:

You can use the properties window to

ROBOPro

specify which button you want to move
in a particular direction. Two options are
available for each direction:

e One option is to use only one
direction (e.g. left button left). In
this case, the IR input only re-
sponds when you move the button
to the left, producing a value from
1 to 15, depending on the move-
ment. This option allows you to
activate a different lamp in each
direction, forinstance.

However, another option is
to select "left button left-right",
which utilizes the full horizontal
range of the button. The IR input
will then produce the values -15
(far left) through +15 (far right).

-
B input

Universal | Counter | Motor
IR remote control function

s

]Pand]mﬂXDsplay]Camera iR

© left button left-right right button left-right on button
left button left right button left off button
left button right right button right
left button up-down right button up-down
left button up right button up
left button down right button down
IR remote control selection (switch setting)
Q@ any off off on off offon onon
Interface / Extension
L 3
Connection

© Local: only when function is entered

Static: always bound

Object: when object is created

V| Let ROBO Pro decide

Cex J[

Cancel 1

Neutral position is 0. This optionis L
very good for controlling motors

because the negative values can move the motor to the left and the positive values move it
to the right. You can simply use the IR input value range -15 through +15 for the motor
speeds 1 through 8. If a value is greater than 8, the motor will simply continue running at the
highest level. For the resolution in 512 speed levels, you can easily convert the values by

multiplying them by 34.

The properties window also lets you set both
remote control ON and OFF buttons so that
you can activate an output, for instance. The
values of the buttons are 0 and 1. Under
switch setting, you can choose whether the
IR input should respond to all ("any") switch
settings of the two IR remote control DIP
switches or to only a particular switch setting,

LX

;“* = E r\l/!:l11 @

e.g. to 0-1. This allows you to operate multiple remote controls simultaneously without interference

between them.

8.8 Operators

All program elements in this group are what are called operators. Operators have one or more
orange data inputs. The values from the data inputs are combined by the operator to create a new
value which is transmitted from the operator’s output by means of an = command.

fischertechnik==x

ROBOPro

Properties window for operators

21|
All operators use the same Properties window. Through the ‘(?D?t d) ot
n . . .+ H an logical arw
Properties window, you can even transform an operatorintoa | - sirat) el
different operator. % Cmukiply) not (lagical not)
) (divide) AND (bit and)

e Under Operation you can set how the operator is to ;:f;”;‘lw ;i’gfb(;t’t)
combine its inputs. The individual functions are eX- ¢ <tessorequ) © 5oR texdusive on)
plained in the next two Sections. ® <) SHL (bt shift It}

" == {greater or equal) ¢ SHR (bit shift right}

e Under Number of inputs you can set the number of > (greaten

inputs the operator is to have. Number of nputs:
| —

8.8.1 Arithmetic operators ~oasa ypes

{* Integer -32767..32767

ROBO Pro makes the four basic operations of arithmetic | Meainapane sk

available to you as operators. With two inputs, the symbols oK concel_|
look like this:
—A [~[=A ——A*——A — (= A = -
+ || - /
=B =B =B =B
Plus Minus Times Divided by | Minus
A+B A-B A*B A/B -A

If the Minus operator has more than two inputs, all subsequent input values are subtracted from
the value in input A. If the Minus operator only has one input, the operator changes the sign of the
input value.

If the Divided by operator has more than two inputs, the value in input A is divided by all further
input values.
8.8.2 Comparative operators (relational operators)

There are 6 comparative operators to compare values:

A FIFA LA FTA <AL A
= - < - > -
- B - B - B - B - B - B
equal not equal |lessthan |lessthan |greaterthan |greater than
or equal to or equal to
A=B A#B A<B A<B A>B A=B

If a comparison is true, the output value is 1, otherwise 0. The output value is always a whole
number even if the input values are floating point numbers.

fischertechnik=x

110

ROBOPro

Besides the not equal operator you can use any of the comparative operators with more than two
inputs. The result then becomes 1 if the condition is true for A and B as well as for B and C, and so
on. For example, this way you can determine with one single operator, whether a value lies within
the given upper and lower bound.

8.8.3 Logical operators

ROBO Pro has three logical operators, which can be used for instance to combine digital inputs.

Aﬁ —AO— A = -
B d B '

And Or Not
A>0andB>0|A>00rB>0|A<=0

The logical operators interpret a value greater than zero as yes or true and a value less than or
equal to zero as no or false. Digital inputs return a value of 0 or 1, so that 0 is interpreted as false
and 1 as true.

The “And” operator sends an = command with the value 1 to the elements connected to its output
if all inputs have the value true, i.e. a value >0. Otherwise the element sends an = command with
the value 0.

The “Or" operator sends an = command with the value 1 to the elements connected to its output if
at least one input has the value true, i.e. a value >0. Otherwise the element sends an = command
with the value 0.

The “Not” operator sends an = command with the value 1 to the elements connected to its output if
its input has the value false, i.e. a value <=0. Otherwise the element sends an = command with the
value 0.

The function of logical operators can also be emulated with several Branch elements. But it often
makes for much easier understanding to combine several inputs using operators.

fischertechnik==x

ROBOPro

8.8.4

Bit operators

A whole number variable in ROBOPro consists of 16 single bits. Any one of these bits can store a
0 ora 1. These bits become a number by assigning each one of them a power of two:

Bit Numerical value Bit Numerical value
0 1=20 8 256 = 28

1 2=2 9 512=29

2 4=22 10 1024 = 210

3 8§=23 11 2048 = 21

4 16 = 24 12 4096 = 212

5 32=25 13 8192 =21

6 64 =26 14 16384 = 214

7 128=27 15 -32768 = 215

For example, for the number 3 the bits 0 and 1 are set to 1 because 20+ 2! = 3. Bit operators

carry out the same operations as logical operators with the exception that they do it

for every

individual bit. Thus 3 AND 6 yields the value 2 because the bit 2'is the only one that is set in both
3=20+2"and in 6 = 2! + 22, Please note that the numerical value 32768, for which only the bit 215
is set to 1, has a special meaning in ROBOPro and is used for error or blank. To generate a varia-
ble with this value you simply enter nothing (blank) for its value.

—A A —AO— —AcIJN— —A X —ASF~ —=AS
N R (9] H H

=B D —-B -BR —-BL| =BR

And Or Not Exclusive Or Shift left/right

Bitis setif itis | Bit is set if it |Bitis setifit |Bitis setifitis | The bits in A are shifted B

setinAandB |issetinAor |isnotsetinA|setin Aand B |places to the left (toward

B and notin both | higher bits) or to the right
(toward lower bits).
8.8.5 Functions

Functions are similar to operators but they always have only one input. Functions include trigono-
metric functions, roots, exponential and logarithmic functions.

Note 1: In many cases, functions are difficult to compute. Since the TX Controller makes sure
that every process can carry out a command at least 1000 times per second, the number of
functions that can be evaluated in one command is limited. Networks of organge data lines
are always processed in one command and are not split up. Therefore one should not call
too many functions in a row in an orange network.

fischertechnike=x

ROBOPro

Note 2: ROBOPro does not use arithmetics with extended precision to compute functions.
Therefore, the precision of results is typically about 2 bits less than the maximal possible pre-
cision of the 48-bit floating point format. The precision of the results is estimated by ROBOPro
and saved in the result.

Property window for functions

o Funcion 21|
All functions use the same property Fu
window. = sqrt (square rook)
= exp {exponential Function base &) = expl0 {exponential Funktion base 10%

° Under Function you can £~ In {lagarithm base &) " lng10 {logarithm base 10}

select which mathematical = sin360 (sine degres) = sin2pi (sine radiant)

. . = cos360 (cosine deqree) " cos2pi (cosine radiant)
function the element will e . ,
. . an360 (kangent degree) " tan2pi (tangent radiant)

CompUte' The Slngle fUnCt|0nS " asind60 {arcus-sine degree) ™ asin2pi {arcus-sing radiant)

are explained in the fO”OWing "~ acos360 (arcus-cosing degree) = acos2pi (arcus-cosine radiant)

two sections. = atan360 {arcus-tangent degree) = akanZpi {arcus-tangent radiant)

e Under Data type you can [Datstve:
select whether the result of | Iteger 2767, 2767
. . "~ Floating point 48bit
the function is a whole num-
ber or a floating point number. ok | cancel |
Also see Section 13 - Working

with decimals.
Except for the abs function, all functions are available as floating point only.

Basic functions

abs Absolute value: Returns the positive value of the input, for example 3.2 for -3.2

sqrt Square root: Returns the square root of the input, for example 1.4142... for 2.0

Exponential and logarithmic functions

exp Exponential function base e: Returns for an input x the x-th power of Euler's num-
ber e, that is ex

exp10 Exponential function base 10: Returns for an input x the x-th power of 10, that is
10x or 100.0 for x=2.0

log Logarithm base e: Returns for an input x the power Euler's number must be raised
to to obtain x.

log10 Logarithm basis 10: Returns for an input x the power 10 must be raised to to obtain

x. For example, for x=1000 we get the result 3.0

Trigonometric functions and inverse functions

All trigonometric functions and inverse functions exist for two different angle measures, that is for
degrees (1 full circle = 360 degrees) and radians (1 full circle = 2 pi).

sin360 / sin2pi Sine: Returns for an input x the sine of the angle x

€0s360 / cos2pi Cosine: Returns for an input x the cosine of the angle x
tan360 / tan2pi Tangent: Returns for an input x the tangent of the angle x
asin360 / asin2pi Arcsine: Returns for a sine value x the matching angle
acos360 / acos2pi | Arccosine: Returns for a cosine value x the matching angle
atan360 / atan2pi Arctangent: Returns for a tangent value x the matching angle

fischertechnike==x

ROBOPro

8.9 ROBO Interface

8.9.1 Digital Branch (ROBO Interface)

If you right-click on the element, the Properties window is displayed:

With this Branch you can direct program control, ac- I
cording to the state of one of the digital inputs I1to 18, ~ [2=2m
in one of two directions. If, for example, a sensoronthe |£2 C®
digital input is closed (=1), the program branches to the ~ [c# c

1 exit. On the other hand, if the input is open (=0), the
program branches to the 0 exit.

Buttons 11 to I8 allow you to enter which of the Interface’s inputs is to be
queried.

Under Interface / Extension you can select whether you want to use
an input of the Interface or an input of an extension module or of another Interface. You can
find out more about this in Chapter7 - Extension modules and controlling several Interfaces

Under Image you can select an image for the sensor connected to the input. Digital inputs
are mostly used with push-button sensors, but often also with phototransistors or reed con-
tacts.

Under Interchange 1/0 connections you can interchange the positions of the 1 and 0 exits
of the Branch. Normally the 1 exit is below and the 0 exit is on the right. But often it's more
practical to have the 1 exit on the right. Press Interchange 1/0 connections and then the two
connections will be interchanged as soon as you close the window with OK.

8.9.2 Analog Branch (ROBO Interface)

As well as the digital inputs, bronch =
the ROBO Interface .has 6 rdoginpu
Ana|Og mpUtS: 2 resistance = Al [voltage] = D1 distance sensor 1
inputs AX and AY‘ two volt- A2 [voltage] i D2 distance senzor 2
age inputs A1 and A1, as well (‘: teek
as two inputs for distances il
sensors D1 and D2. With this [Inteface / Extension

Branch you can compare the value of an analog input JiF [

with a fixed number and, according to the result of the
comparison, branch to the Yes (Y) or No (N) exit.

If you right-click on the element, the Properties window is
displayed:

i~ Condition:

Analog value I) j II]

™ Swap /M branches
% Leave Y/ branches as they are
" Swap /M branches

Under Analog input, you can select which of the
Interface’s inputs is to be queried. All analog inputs oK | Cancel |
return a value between 0 and 1023. You can find
further information about the various analog inputs
in Section 8.7.2 - Analog input

fischertechnike=x

ROBOPro

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find further information
about the various analog inputs in Chapter 7 - Extension modules and controlling several
Interfaces.

Under Condition you can select a comparison operator such as less than (<) or greater than
(>) and enter the comparison value. The comparison value should lie in the range from 0 to
1023. When you start a program containing a Branch for analog inputs in online mode, the
current analog value is displayed.

Under Interchange Y/N connections you can exchange the position of the Y and N exits of
the Branch. Normally the Yes (Y) exit is below and the No (N) exit is on the right. But often it's
more practical to have the Yes exit on the right. Press Interchange Y/N connections and the
Y and N connections are swapped as soon as you close the window with OK.

8.9.3 Wait for input (ROBO Interface)

(o]
If you right-click on the element, the @ 65 Tising §
Properties window is displayed: ® 1= D)
0110

The Wait for Input element waits until one B
of the Interface’s inputs is in a particular —ar0r
state or until it changes in a particular way. ol

Under Wait for you can select the type of change or the state t0 - pigiatingu:

be waited for. If you select 1 or 0, the element waits until the in- FHCs
putis closed (1) or open (0). If you choose 0 -> 1 or 1 >0, the £ 2 © ®
element waits until the state of the input changes from open to i e
closed (0->1) or from closed to open (1->0). In the last case, the
element waits until the state of the input changes, regardless of
whether it’s from open to closed or vice versa. To help you un-
derstand this further, it is explained in Section 3.6 - Other [lmes——
program elements how you can emulate this element with the Fushbutton switch =

Branch element.

Under Digital input you may enter which of the Interface’s inputs o | o |
11 to 18 is to be queried.

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You can find out more about this
in Chapter 7 - Extension modules and controlling several Interfaces.

Under Image you can select an image for the sensor connected to the input. Digital inputs

are mostly used with push-button sensors, but often also with phototransistors or reed con-
tacts.

 Interface / Extension

IF1 g

8.9.4 Pulse counter (ROBO Interface)

[0 11 88/

fischertechnik==x

ROBOPro

Many fischertechnik model robots also use pulse wheels. These gear
wheels operate a sensor four times for every revolution. With these
pulse wheels you can turn a motor on for a precisely defined number
of revolutions rather than for a given time. To do this, you need to
count the number of pulses at an input of the Interface. For this
purpose there is the Pulse counter element, which waits for a user-
definable number of pulses.

If you right-click on the element, the Properties window is displayed:

8.9.5

|E !F11 B

Under Pulse type you can select the type of pulse to be count-
ed. If you choose 0 to 1 (rising), the element waits until
the state of the input has changed from open to closed (0 to
1) the number of times you have specified under Number of
pulses. If you choose 1 to 0 (falling), the element waits until the
state of the input changes from closed to open (1 to 0) the
specified number of times. With pulse wheels, however, the
third possibility is used more often. Here the element counts
both 0 to 1 and 1 to 0 changes, so that 8 pulses are counted
per revolution of a pulse wheel.

Under Digital input you may enter which of the Interface’s 8
inputs 11 to I8 is to be queried.

5I

— Mumber af pulses:

10

~ Pulse type:

i 0-51[riging)
1= 0 taling)
@ 031ml->0

r~ Digital input:
“n Cs
Cz Ce
3 CF
[l]

i Interface / Extension

IF1 -

r Image:

Pushbutton switch 'l

0K | Cancel |

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in

Chapter 7 - Extension modules and controlling several Interfaces

Under Image you can select an image for the sensor connected to the input. Digital inputs
are mostly used with push-button switches, but often also with phototransistors or reed con-

tacts.

Digital input (ROBO Interface)

orange connection, otherwise a value of 0.

fischertechnike=x

The value of one of the digital inputs 11 to 18 can be queried via the Digital
input element. If the two sockets belonging to the input on the Interface are
electrically connected, the digital input element returns a value of 1 on its

Properties window for Digital inputs:

Under Digital input you may select which of
the Interface’s inputs is to be used. Extension
module inputs are selected under Interface /
Extension.

Under Image you can select an image of the
sensor connected to the input. In most cases
this will be a mini-push-button sensor. A reed
contact is a switch that reacts to magnetic
fields. Even a phototransistor can be con-
nected to a digital contact, although it is really
an analog sensor. You can use a lamp with
lens together with the phototransistor connect-
ed to a digital input as a photoelectric beam,
which is either interrupted (=0) or closed (=1).
On the other hand, if you connect the photo-
transistor to an Analog input, you can
distinguish many graduations between light
and dark.

ROBOPro

rput x]
Digtal | Distance | 1R1 | IR2 | IR 1+2] Anaot| ¥
i~ Digital input:

i« 8
(el -l
(el E Il

~Image:

Pushbutton switch j

"Inlerface / Extension

fIF1 |
Ok Cancel

Under Interface / Extension you can select whether you wish to use an input of the Interface
or an input of an extension module or of another Interface. You will learn more about this in
Chapter 7 - Extension modules and controlling several Interfaces

On closer examination, there is only one type of program element for all types of inputs. You can

switch input times at any time via the tabs at the top of the Properties window. This is particularly
useful for switching between switch, IR and panel inputs.

8.9.6 Analog input (ROBO Interface)

| E ﬁ] — element. Unlike digital inputs, which can only return a value of 0 or 1, ana-

The value of one of the analog inputs can be queried via the Analog input

log inputs can distinguish fine gradations. All analog inputs return a value

between 0 and 1023. The ROBO Interface, however, has various kinds of
analog inputs, which measure various physical quantities. There are analog inputs for resistance
measurements, for voltage measurements and for a special distance-measuring sensor.

Input

Input type

Measurement range

A1, A2

Voltage inputs

0-10.23V

AX, AY

Resistance inputs

0-5,5kQ

D1, D2

Distance sensor input

ca. 0-50cm

AV

Power supply voltage

0-10V

The usual fischertechnik sensors, NTC resistor, phototransistor and photoresistor, transform the
quantity measured (temperature of light intensity) into a resistance. Therefore, you must connect
these sensors to the AX or AY input. The voltage inputs A1 and A2 are designed for all sensors
that produce a voltage between 0 and 10V.

fischertechnik==x

ROBOPro

There is no socket on the ROBO Interface for the AV input. It is always linked to the Interface’s
supply voltage. In this way you can, for example, monitor the battery voltage and put the model
into its exit position before the battery isflat.

The distance sensor inputs D1 and D2 accept connection to special fischertechnik sensors that
can measure the distance to, for example, an obstacle.

The Intelligent Interface has only two analog inputs, EX and EY. These correspond to the AX
and AY inputs of the ROBO Interface. The other analog inputs cannot be used with the Intelli-
gent Interface!

Properties window for Analog inputs:

nput x|
e Under Analog input you can select the Distance| IR 1 | IR2 | IR 152 Andlog | Pane <] >
desired analog input using the table above. ~Ardloginput
e Under Image you can select an image of A1 [voltage] " D1 distance sensor 1
the sensor connected to the input. A2 [voltage] " D2 distance sensor 2

(ol = & zupply volkage

e Under Interface / Extension you can

P
select whether you wish to use an input of

the Interface or an input of an extension [e

module or of another Interface. You will NTC resistor =
learn more about this in Chapter 7 - Exten- _

sion _modules and controlling several Nate: The ROBU 1/0 Extension Module

| n rf has only ane analog input, 1
nterfaces

It again becomes clear on the Properties win-
dow for analog inputs that for all inputs ROBO
Pro uses a single element, which can be
switched between input types through the tabs.

For simplicity, however, separate input elements
are available ready for selection in the element window.

"Interface / Extenzion

fIF1 |

oK Caticel |

8.9.7 IR Input (ROBO Interface)

m The ROBO Pro Interface has a built-in infrared receiver for the hand-held
— transmitter from the fischertechnik IR Control Set, item number 30344. The
IFi infrared hand transmitter is very useful, not only for remote control, but also
generally as a keyboard for your models. There are two receivers for the IR
Control Set, and you can switch between them with the buttons 1 and 2 on the handset. So you
can assign two functions in your ROBO Interface to each button of the handset. You can switch
between two assignments with the shift keys 1 and 2. Alternatively, the 1 and 2 keys can be used
as ordinary keys.

fischertechnike=x

B
ROBOPro
In the Properties window of an IR input you can use

the tab bar at the top to switch between IR 1, IR 2 e X

and IR 1+2. If you have selected IR 1, the IR input Diatal| Distance 1R1 |2 [1A1:2] analot |]
element only returns a 1 if the corresponding key on IR remote cantal,layer 1: """
the transmitter is depressed and the transmitter has :’:EMCW g (‘: m;’:c":m
previously been set via the 1 key to assignment 1. If = —
you select IR 2, on the other hand, the ' M1speed M2 speed
transmitter must have been set to assignment 2 ' M3 speed

using the 2 key.

But if you select IR 142, the setting of the handset
doesn’t matter. In this case, you can also use the
1))) and 2))) keys as inputs.

Interface # Extension
In the program element this choice is displayed by “n =
means of a white 1 or 2 in the lower right of the

handset symbol In the case of IR 1+2 no number is ok | cancel |

displayed in the program element.

fischertechnik==

ROBOPro

9 Panel elements and panels: overview

In ROBO Pro you can define your own panels. Panels make it less cumbersome to control com-
plex models. A panel is displayed on your PC screen. Panels only work in online mode. On this
subject, see Section 3.7 - Online and download operation-what's the difference?

To create a panel, you select Panel in the function bar.
Funickion | Symbaol Panel |T>< Display | Propetties I Description |

In the empty gray field below you can then insert panel elements. A panel always belongs to the
main program or subprogram in which you were when you created the panel. Therefore it is im-
portant that you always select the right subprogram in the subprogram bar before creating a panel.
Panels are generally created under the main program.

Panels contain displays and control elements. With displays, you can display for example variable

values or text messages. Control elements, on the other hand, function as additional sensors of
analog inputs.

To every panel element that you insert in the panel there is a corresponding

Panel element in the program: a Panel input (for control elements) or a Panel

— output (for displays). You establish the link between your program and

ABC

Entry your panel through these program elements. You find them in the Inputs,

_____ Panel outputs element group. A different symbol is displayed according to which

— \ < type of panel element you link to these program elements. But in the ele-
Display ment list there are only two elements: one for displays and one for control

elements.

9.1 Displays

Displays are used in a similar way to Interface outputs. You can set the value of a display with an =
command.

9.1.1 Meter
. The Meter is based on an analog instrument with pointer. Itis
e g mostly used to display the value of analog inputs; but you can also
X 5 use it for variables or other program elements.
\ The meter is controlled from the program via .
a panel output. You will find the Panel out- - \\ +|Main pro
put in the element group Inputs, outputs. Meter

You set the value of the meter by sending an = command to the

corresponding panel output in the program. Almost all program -{ bl H\ Efi:;sy
elements with data outputs send an = command when their value

changes. You can connect analog inputs or variables for example

directly to the panel output.

fischertechnike=x

Properties window for meters

9.1.2

The text display is controlled from the program via a panel output. You will

Under ID / Name you should first enter a name for the meter.
The name is important so that you can distinguish between
more than one meter in your program.

Under Background color you can set another color than
white.

Under Minimum value and Maximum value you specify the
values corresponding to the needle positions at the left and
right ends of the scale. If one of the values is less than 0 and
the other greater than 0, a particularly long 0 stroke is drawn.

L Meter 2=

ROBOPro

ID [Mame: *anel Metar

Background color: Ed...
=T
o i
Pasdimum walue: | 100 =
=T
2 i
=T
10 =

Moke: The “ID [Mame” field is used ko
access the meter from the program.

[o3 Cancel

Minimum value:

short tick step:

Long tick step:

The scale consists of long and short strokes. The distance between the long and short
strokes is entered under Step size short / long marks. If both have the same value, only long

marks are visible.

Text display

of the two.

find the Panel output in the element group Inputs, outputs.

As soon as you have linked the Panel output with a text display by means
of its Properties window, the symbol changes and the name of the panel

(e.g. Main) and of the display (e.g. Text)appear.

There are two ways in which you can set the text in the display:

fischertechnik==x

In a text display you can show numerical values, text, or a mixture

_ \ Panel
Display

_ - Main pro
Text

You set the content of the display by sending an = command to

the corresponding panel output in the program. This is very practical if
you want to use the display to display the value of a variable or other
program element, because most program elements automatically send

=0

an = command through their data output whenever their value changes.

The = command overwrites only the last 6 characters of the display. You can fill the rest of the
dis- play with a pre-entered text. In this way you can supply some explanatory text for the
value in the display. If it is a multi-line display, you can also put the explanatory text in a line of
its own. In multi-line displays only the last 6 characters of the last line are overwritten by an =

command.

With the Text command you can set the content of the display
as you wish. The Text command is a special command ele-
ment in that it can send, not just a number, but a whole text,
through its output. Like an ordinary command element, the
Text command element can also have a data input. In this
case you can build the numerical value from the data input in-

Text

to the text. If you send a Display element multiple Text commands, the texts are concatenat-

ed. In this way you can mix numbers and text at will.

ROBOPro

Control characters in Text commands

The following control characters can be used in the Text command element to achieve particular

effects.

Control Effect

character

HHHHHH Outputs the value in the data input as a 5-digit number + sign character.

HH Outputs the value in the data input as a number with two decimal places,

with a period as separator.

Ht Outputs the value in the data input as a number with two decimal places,

with a comma as separator.

\c Clear display and insert subsequent text at the beginning of the display.
Properties window for text displays o Text display 2] x]
e Under ID/Name you should first enter a name for the = ®/Mame

display. The name is important so that you can distin- =t =" 0 -
guish between more than one display in your program. =
e Under Text you enter the content of the display. This botsjeokmns: [18 =]
content is retained until you send a command to the - —
display from the program. If you send an = command to e =

the display, only the last 6 characters of the display ~ ackgoundeoor: M Est.. |

contents are overwritten. The beginning of the textis . .. I
retained so that you can display a note before the |
number saying what kind of number it is. In the example St Ty T
illustrated, the text “Var=" is retained. The display has -

10 characters, and so 10-6=4 characters are retained. LI ;'I

e Under Digits/columns and under Lines you can set

how many characters the display should allow room for. In a multi-line display you can dis-

play a note like “Var="or “Visitors” in a line of its own.

e Under Background color and Text color you can alter the color design of the display. Click

on Edit ... to select a color or to define your own color.

9.1.3 Display lamp

. The Display lamp is the simplest type of display. It functions in a similar way to a fischer-

technik lamp component connected to an Interface output.
The lamp is controlled from the program via a panel output. You will find the

Panel output in the element group Inputs, outputs.

As soon as you have linked the Panel output with a display lamp by means
of its Properties window, the symbol changes and the name of the panel
(e.g. Main) and of the lamp appear.

fischertechnike=x

_\ Panel
Display
_ . Main pro

Lamp

ROBOPro

You can switch the lamp on or off by sending the corresponding panel output
an On or Off command, as you would also do for a real lamp output. You can
also switch a display lamp on or off via an = command. If the value is greater | = O
than 0, the lamp is switched on If the value is less than or equal to 0, the lamp
is switched off

Properties window for display lamps

|
o Under ID / Name you should first enter a name for the L x|
display lamp. The name is important so that you can distin- 1P /MNarme:
guish between more than one display lamp in your program. goee [Edi.
e Under Color you can change the color of the display lamp. initialyon: =
TO do this’ C|iCk on the Edlt bUtton‘ Mote: The "ID / Name" field is used to
e If Initially on has a cross next to it, the display lamp is on = %" P em snireut sement

until the corresponding program element receives a com-
mand. Otherwise the display lamp is initially off.

oK | Cancel

9.2 Control elements

Control elements are used in a similar way to Interface inputs.

9.2.1 Button

You can use the Button panel element like a fischertechnik sensor or switch
nop connected to one of the inputs of the Interface.

The Button is queried from the program via a panel input. You will find the

Panel input in the element group Inputs, outputs. ABC

Panel |
Entry

You can connect the panel output associated with the button, like an
Interface digital input, to any program element with a data input, for exam-
ple to the Branch element. If the button is depressed it returns 1 as its
value, otherwise 0.

Properties window for buttons Burton x|

e Under Inscription text you can enter the inscription Buttontest:
for the button. This is at the same time the name by .
which the button is accessed from the program. In the " ' e |
case of the button, there is no additional Name/ID field ~ Test eolor | Btk
as found with the other panel elements. Pushbution switch: [

¢ You can change the color design of the button under Note: The "Button text” fisld is used to
. . . access the button from an input element.
Button color and Text color. To do this, click on Edit.
QK | Cancel |
e If a check mark appears by Pressure switch, the

button functions as a switch rather than a sensor. On the first click on the button it is pushed in,
and then remains depressed until the second click. Otherwise, the button works like a sensor
and springs open again straight away when it is released.

fischertechnik==x

ROBOPro

9.2.2 Slider

You can use the Slider like a potentiometer connected to an analog
input of the Interface. Unlike the button the slider can return not only the
values 0 and 1, but many different values, like an analog input. The
range of values can be set through the Properties window. The slider can be used for example to
set the motor speed between 1 and 8.

The Slider is queried from the program via a panel input. You will find the Panc]
ane

Panel input in the element group Inputs, outputs. ABC -
Entry

As soon as you have linked the Panel output with a slider by means of its Main pro
Properties window, the symbol changes and the name of the panel (e.g. I Slider |
Main) and of the slider appear.

You can connect the panel output associated with the slider, like an Interface
analog input, to any program element with a data input. Very often the slider

is connected to a command element with a data input, so that the slider =] n
controls the speed of amotor.

Properties window for Sliders [o.Slider 2]

e Under ID / Name you should first enter a name for 101 e

the slider. The name is important so that you can sercokr: O _ ede. |
distinguish between more than one slider in your program. Mommvas [0 =]

e Under Slider knob color you can change the color of the Maximum valds: | L00 =
slider knob. To do this, click on Edit.

e Under Minimum value and Maximum value you enter the

Mote: The 1D Mame" field is used to
access the slider from an input element.

value range for the slider. If you want to use the slider to ok | ol |
control the speed of a motor, the value range should go
from 1to 8.

ROBO Pro has the usual drawing functions. You will them functions in the element group window
under Draw. In the subgroup Shapes are contained drawing tools for various basic geometric
shapes. In the Text subgroup you will find text-writing tools for various font sizes. The other sub-
groups contain functions to alter color and line thickness.

fischertechnike=x

ROBOPro

10 Drawing functions

With drawing functions you can illustrate your panels and programs, to make their function clearer.
Here for example is illustrated a user-designed panel for a robot.

Supply valtage
Mator speed. In Open

Coordinates

[~ End switch

The buttons, co-ordinate displays and end switch lamps are kept in each case in the same color as
the respective individual axes in the schematic drawing of the robot. This results in panel that is
very easy to understand.

The application of the drawing functions should present no great difficulties. So only a few points
that might not be immediately clear are presented in the following:

fischertechnik==x

Graphical objects like rectangles and circles are not delineated as in many programs by
holding down the mouse button, but through two mouse clicks, one in the upper left corner
and one in the lower right corner.

Text is not edited in a dialog window, but directly in the working area. When you insert a new
text object, initially only a bright blue frame appears. You can now simply type atthe ~ key-
board and the text you type will appear directly in the working area. You can also insert text
from the clipboard with CTRL+V.

Once you have drawn an object, you can edit it by moving the small blue handles. There are
also handles for turning and distorting objects. A rectangle has two handles at the upper left.
If you displace the second, larger handle, you can round off the corners of the rectangle. You
can exit editing mode by right-clicking with the mouse or by pressing the ESC key.

If want to edit the object later, select the Edit function in the Draw menu. If you the click on
an object, the bright blue handles will appear again.

Many objects have two or more editing and drawing modes. While drawing or editing an
object, you can switch between the individual modes with the TAB key on the keyboard. In
the case of a circle, for example, you may select whether you would like to specify two
boundary points or the center and one boundary point. In the case of polygons, you
can change between point editing and functions like “rotate”. With text objects, you can
switch be- tween editing the text and changing the font size or angle of rotation.

ROBOPro

In the Draw menu there are functions to put the object in the foreground / background. With
this function you can put all selected objects (drawn in red) forward or back, so that the ob-
scure other objects or are obscured by them.

With the Raster snap function in the Draw menu you can switch on or off the character
matrix. You should however take note that the matrix is switched on when you are editing
your program, as all program elements are aligned tothe matrix.

You can alter the alignment of text objects by pressing “CTRL” plus a key from 1..9 on the
numeric keypad. But this only works if the “Num-Lock” light on the keyboard is on. If not, you
must first press the NUM key.

fischertechnike=x

ROBOPro

11 Camera functions

ROBO Pro version 4.x and higher supports the use of the fischertechnik USB camera. This camera
can be connected to the USB Host interface of the ROBOTICS TXT Controller (USB1 port). The
camera images can be transferred to the PC using the USB cable or wirelessly via Wi-Fi to be
viewed in ROBO Pro. You can also use the camera as a sensor for detecting colors, motion, lines
and balls. These camera sensor fields can be used both in online and download mode.

The camera can also connect to an available USB interface on the PC and can be operated to-
gether with the ROBO TX Controller or ROBO Interface in online mode. It is not possible to
connect the camera to these devices directly.

111 Camera window

All settings for the camera are made in the Camera window. It is available as a tab in the ROBO
Pro program:

Main program

| Function I Symbol I Panel I TX Display | Camera |Properﬁes | Description |

In this window first specify whether the camera is to be connected to the TXT Controller or to the
PC under Camera Connection. Using Activate Camera, you can display the camera image in the
camera window without having to start the running ROBO Pro program in online or download
mode.

In the camera window you can also add sensor fields to help a robot follow a line.

When the camera is on, the values of all added sensor fields can be viewed which supply the
sensor fields under Sensor Values. This will always let you know which values are currently
available and what variables they have.

More details about this are provided later in this document.

11.2 Camera viewer
The camera image can be viewed from more than just the Camera window.

The Operating elements element group contains the Camera viewer.
You can place this element on your panel. If you start ROBO Pro in
online mode, this viewer will also display the camera image. You can

Element groups
- Operating elements

i Displays - .
Control elements then use the panel to control your mobile robot remotely, for instance,
and at the same time see where it travels. You can change the size of
4. Drawing the viewer element in the Draw — Edit menu.

fischertechnik==x

ROBOPro

11.3 Camera sensor fields

mesw=w The camera can be used as a multifunction sensor. ROBO Pro provides different
sensor fields for this purpose. These fields are dragged from the Element window to
the image in the Camera window and dropped at the desired location on the image.

Once there, you can still move them around and use Draw - Edit to change their
size.

Right-clicking on an element that has been added opens the dialog box used to
adjust various settings.

The value that supplies a sensor field can be read in by an orange Camera input
element (level 3) and edited in an executed program.

Camera
Input

11.3.1 Color detector
This element calculates the average color in a rectangular field.
You can then change the size of the field later using the Draw | Edit menu.

All pixels in the field are included to ensure that the correct mean value is found
even in highly patterned fields.

You can use the Name, which you can change in the sensor field dialog box, to link to the
input elements.

— The element provides 4 input values, R,
= s et = G, B and BW, for the primary colors
Main pro | || meslcame e o [t = red, green and blue and the total
Color R f o oo brightness as percentages (value
ranging from 0 to 100, 0 = dark or
black, 100 = bright or white).

Please note that the color value may
depend on the lighting. Even though
humans perceive see light from com-
pletely different light sources as white,
the color of sunlight and the light of a
light bulb, for instance, are completely
different. Just like the human eye, the
camera attempts to compensate for the
color of the light. This works best when there is very little white in the image on which the camera
can focus. If the overall camera image is very colorful, it is possible that color correction will not
work properly.

If you want to define the colors very precisely, you can do this with the line finder.

fischertechnike=x

11.3.2 Movement detector

moving objects.

ROBOPro

This element detects if the content in a rectangular field of an image changes. You
can use this element for alarm sensors or for detecting hand gestures (waving) or

You can change the size of the field later using the Draw | Edit menu. The Name is

used to create a link to the input elements.

Movement detector

S

Name

Change contrast 10

Used in input element
[%] 100 = black to white

Change area 10 [%&] 100 = full sensor area

MNote:
The sensor field size and shape can be changed using the Drawing/Edit menu.

[oK][Cancel]

but the change area is very low (1).

o | Main pro L
™ Movement

B

[Universal [Counter | Motor | Panel | TX Display | Camera |

88 Input

Interface / Extension

Fi -

Connection
® Local: only when function s entered
Static: ahways bound
Object: when object s reated
[7]Let ROBO Pro decide:

) Coa)

You need to set two parameters in
the dialog box of this element.
Change contrast specifies how
much to change the brightness of a
pixel. 100% is a complete switch
from black and white or white and
black. Change area specifies the
percentage of the rectangular field
that has to change. For instance, if
you want to detect ants crawling on
a white sheet of paper, the change
contrast is set very high (50 or more),

The element provides two input fields:
CandA.

C is the mean change in contrast. To
determine the value, only pixels are
included that are above the set
threshold.

A specifies the change area, which is
the percentage of the area in which
the threshold for the change contrast
C is exceeded.

If the value set for the change area A
is not attained, the value for the
change contrast is 0. Therefore, if you

only want to find out if a movement is detected, you can simply compare the C input with 0.

11.3.3 Linefinder

This element detects lines that cross the line of the sensor element. The element
detects the position, width and color of the line. For instance, in order to identify a
path which a mobile robot is to follow, place the element on top of the image across

the entire width from left to right.

You can change the size and position of the sensor line later using the Draw | Edit

menu.

The link to the input elements is created using the name.

fischertechnik==x

ROBOPro

The Minimum width and Max-

Line findefy — — imum width specify the area in
s = D e bent St which the width of the Ilng is to
_ _ be. You should not set this area
el - » to be larger than necessary
Minimum width In result coordinates because It requires a Considera'
Maximum width 20 In result coordinates ble amount Of Computing time to
Minimum contrast 20 [%] 100 = black on white ensure that only that which is
Number of results 1 Detect up to 5 lines (for branches) aCtua”y a line iS |dent|f|ed as a
White on black | Detect bright line on dark background ||ne' HOWeVer, yOU ShOU|d alSO
_ : : _ not make the area too small,
Color detection @) Black / White Fast; black lines one white paper . he i b| d
and automatic ~) Color Medium; colored lines or colored paper since t e Ines may ur an
white balance Precision color Slow; colored lines on white paper appear wider or narrower when
Position and _) Rough Fast; 10% error movements are qU|CK- The unit
width detection 9 Fine Medium; 2 pixels error for width Corresponds to the
predision Precision Slow; 1 pixel error scale d|sp|ayed with the element.
Resuit coordinates: Itis best to view the line with the
Mimimum value -100 Position value at start point camera activated in the Camera
Maximum value 100 Position value at end point WindOW, measure the width
Axis tick 10 Position axis tick stepping USlng the S(‘:ale, and use the
measured width of +-20% to
Notes 50%.
Multiple lines are reported left to right.
The sensor field size and shape can be changed using the Drawing/Edit menu. Under Minimum contrast you
[ox][cance | can set how much the line is to
L contrast from the background.

Jet black on bright white corr-
esponds to a contrast of 100%. Please note that in the case of moving models the contrast may
be significantly reduced in some spots due toreflections.

Under Number of results you can set how many lines the sensor element is to detect. The ele-
ment can detect up to 5 lines and provides a separate set of input elements for each line. The lines
are output sorted by their position on the scale: the ones on the negative end of the scale are
shown first.

Select the White on black box to detect bright lines on a dark background instead of dark lines on
a bright background.

Selecting Color detection lets you specify whether the sensor element is to detect only black and
white or to include detection of colored lines. In color mode, for instance, a red line on a white
background provides the same contrast as a black line. You should therefore not use color mode
for black lines. In color mode the sensor element also provides inputs for color components, which
is similar to the Color detector sensor field. In Precision color mode, the sensor element uses
the white background for the precise balancing of white light. Colors detected this way are more
precise and easier to reproduce, but they deviate considerably in some cases from the colors
detected using the Color detection sensorfield.

Selecting Position and width detection precision lets you specify how much computing time the
sensor element is permitted to use to determine the position and width of the line most precisely.

fischertechnike

ROBOPro

You can set the value range of the scale under Minimum value / Maximum value. If you change

these values, you will also have to adjust the
between markings on the scale under Axis tick.

width setting. You can set the spacing

The sensor element provides

£ et 17] 4 to 7 input fields per line,

Al Main pro| | “=elele iz == | depending on the mode. This
i = T e makes a total of up to 35 input
IE Line 1 Q g fields. The most important
;;;::;3;;;;“ input fields are Contrast and

o 10N Position. The contrast speci-

fies how much the line

contrasts with the background.

I{:‘“’ Bersen . If the contrast does not reach

— the set threshold, 0 is returned

G so that the contrast can be

e used to identify whether a line

[@1LetR080 pro decke was detected or not. The

(oo) position is the center of the

line in the coordinates of the

scale. The width is the width

of the line in the coordinates of the scale as well. In addition, depending on the color mode the

sensor element provides a line brightness B/W and co

11.3.4 Ball finder

lor R (red), G (green), B (blue).

This element detects colorful circular surfaces, balls or other compact, colorful
objects in front of a white, gray or black background and provides the size and

position of the object. To ensure that
can be in the detection area.

his function works, only one colorful element

You can change the size of the field later using the Draw | Edit menu.

—— N
Circle/Ball finder =
ik
Name = Used in input element
Ball detection:
Minimum color contrast 25 [%] 100 = full bright color on gray

Minimum size 12 In x-axis result coordinates
Maximum size 120 In x-axis result coordinates

Exdusion area | Name of exdlusion object(s)

Result coordinates:

X minimum -100 Left border x coordinate

X maximum 100 Right border x coordinate
X grid tick 10 X axis grid line spacing

Y minimum 0 Bottom border y coordinate
Y maximum 120 Top border y coordinate

Y grid tick 10 X axis grid line spacing

Notes
¥ max is adjusted to a 1:1 xfy scaling.
The sensor field size and shape can be changed using the Drawing/Edit menu.

o]

fischertechnike

Use Name to create the link to the input
elements.

Under Minimum color contrast you can set
how colorful the object has to be to be
detected. 100% corresponds to an intense
color against a colorless background.

The Minimum size and Maximum size of the
ball specify in which area the size of the
object is to be. You should not set this area
to be larger than necessary, since it
requires considerable computing time,
making it more likely that it will find
something you did not want to detect.
However, you should also not make the
area too small, since objects may blur and
appear larger or smaller when movements
are quick. The unit for the size

131

ROBOPro

corresponds to the scale displayed with the element. It is best to view the object with the camera
preview, measure the size using the scale and use the measured size of +-20%.

You can select the exclusion objects that have already been added under Exclusion area (see
section 11.3.5). If colorful parts of the model can be seen in the detection area, you can exclude
these surfaces from the detection area. All excluded areas with the same name are taken into
account.

Under Result coordinates you can specify in which area the values should lie on the X and Y axis
of the grid. The Y max value is automatically set to ensure that the coordinates in the X and Y
direction are set to the same scale. Under X/Y grid ticks you can adjust the line spacing in the grid.

The sensor element

ES Input 2] provides 4 input fields.
Main pro | universal | Counter | Motor | panel | X Display | Camera L The most |mportant
|| __ Sckctacmercenoried input fields are Contrast
Ball X . and X/Y. The contrast
S specifies how much the
e color intensity of the
object contrasts with the
background. If the
T contrast . of the set
= - threshold is not reached,
0 is returned so that the
Connection
e contrast can be used to
static: avays bound identify whether an
B object has been detect-
ed ornot. The X/Y
- coordinate is the center

of the object in the
grid coordinates. The
size is the diameter of the object, also in the grid coordinates.

11.3.5 Exclusion object

This element is used to hide areas from a ball finder’s detection area if, for instance,
colorful parts of the model can be seen there which could mistakenly be detected
as aball.

You can change the size of the field later using the Draw | Edit menu.

The name is selected in the ball finder and must be the same for all exclusion objects to be used in
the same ball finder. All exclusion objects with the same name are taken into account.

fischertechnike=z

ROBOPro

12 TXT and TX Controller functions

ROBO Pro 4.x can be used with the ROBOTICS TXT Controller and the ROBO TX Controller as
well as with the previous ROBO Interface. You can develop ROBO Pro programs so that they run
without changes on the ROBO Interface as well as on the TX or TXT Controller. But since there
are differences between the interfaces in the inputs and outputs, this is not true for any ROBO Pro
program. The inputs for the ROBOTICS TXT Controller are identical to those of the ROBO TX
Controller. For the sake of simplicity, this manual will only refer to the ROBOTICS TXT Controller
going forward. Everything that applies to the ROBOTICS TXT Controller also applies to the ROBO
TX Controller. For example, the ROBOTICS TXT Controller has 8 universal inputs, which can all
be used as analog input for resistance values as well. The ROBO Interface, by contrast, has only
two resistance inputs (AX and AY). On the other hand the ROBO Interface has an internal input for
supply voltage. This can be measured by the ROBOTICS TXT Controller as well, using an univer-
sal input.

12.1 Installation of the ROBO TX Controller USB-driver

You can find the USB driver for the ROBO TX Controller in the ROBOPro installation folder in
subfolder \USB-driver installation\TXController. There you can select the driver matching your
Windows operating system. Except of the driver folder, the installation works in the same way as
for the ROBO Interface (see also Section 1.2 - Installing the USB driver)

12.2 Environment (Level 1 and above)

In order to show only those options during the development of a program, which are actually
supported by the target interface, you first select via the toolbar button, if a program is designed for ROETE
the ROBO Interface or the ROBOTICS TXT Controller.

Depending on which interface is selected, the toolbar button changes its appearance. This button [i__|
and the corresponding menu Environment change neither the current ROBOPro program nor pnpnip
which kind of interface is connected to the computer (this is adjusted via the COM/USB button).

This button only determines which options are shown in the property windows of program elements. [z
Below you see the property window for a branch for the ROBO Interface and the ROBOTICS TXT "l=E
Controller.

fischertechnik==x

Furthermore, input elements which don't match the selected
interface are drawn with a red border.

Most usually you will work in the environment, which matches
the interface you own. But there are a few exceptions:

ROBOPro

== Branch 2lx == Branch 2lx
rDigital input: ————— [Inputmode: —— rDigital input: ———————————————

@HE (15 D COMIE | |10y [all (RO

12 (8 Cep ©M2E | | F Skohm C O

13 17 (O Cip CME Lol B el

14 18 4D M4E ¥ I8
~Interface [Extension ~Interface [Extension

J1FL = J1F1 |
[~ Sensor bype: Image:

IPushbutton switch ﬂ IPushbutton switch ﬂ
—Swap 1)0 branches ~Swap 1)0 branches

% Leave 1)0 branches as they are % Leave 1)0 branches as they are

" Swap 1/0 branches " Swap 1/0 branches

oK | Cancel | QK | Cancel

You want to develop a program, which uses a ROBOTICS TXT
Controller as well as a ROBO Interface. In online mode this is
possible. In this case you develop the program parts intended for
the different interfaces in the respective environment. You can change the environment
hence and forth any time.

You own a ROBOTICS TXT Controller and got a program, which has been designed for the
ROBO Interface, from a friend. If the input configuration is compatible, you can use interface
independent programming (see the next section for further information). If you only want to
do small changes, it is better to stay in the ROBO Interface environment.

You own a ROBOTICS TXT Controller and want to write a program for a friend, who owns a
ROBO Interface. In this case you can use interface independent programming as well and
develop the program in the ROBO Interface environment.

The two above points apply of cause also the other way around.

12.3 Interface independent programming

As long as your program uses inputs only, which are available on the ROBO Interface as well as
on the ROBOTICS TXT Controller, you can use your program without changes on the ROBOTICS
TXT Controller as well as on the ROBO Interface. The input mapping is as follows:

ROBO Interface ROBOTICS TXT Controller

D1 (ultrasonic)* 11 (ultrasonic)*

A1 (analog 10V) 12 (analog 10V)

AX (analog 5kOhm) | 13 (analog 5kOhm)

fischertechnike=x

ROBOPro

AY (analog 5kOhm) | 14 (analog 5kOhm)
11-14 (digital) 15-18 (digital)
15-18 (digital) C1D-CA4D (digital, not for trail sensor)**

*Note: Only the ultrasonic sensor with 3 connectors and order number 133009 can be at-
tached to the ROBOTICS TXT Controller. The ultrasonic sensor matching the ROBO
Interface has 2 connectors and order number 128597.

*“*Note: The abbreviation C1D means, that the counter input C1 is used as simple digital in-
put. If C1 is used as fast counter input, the window shows C1C.

If your program uses only the inputs listed above, and if the input mode for the universal inputs 11-
I8 matches on the ROBOTICS TXT Controller as well, you can load your program on the ROBO
Interface as well as on the ROBO TX Controller. The mapping is done automatically, if you start
the program in online or download mode. So you can develop a program in ROBO Interface mode
using ROBO Interface inputs, but select via COM/USB a ROBOTICS TXT Controller.

12.4 Conversion of programs

If you cannot or do not want to do interface independent programming, you can also make the
adaptions to the interface in the program permanently. The menu point Environment / Map inputs
adjusts all inputs to the selected environment in the way listed in the table above. Inputs which are
not assigned in the table (D2, A2, AV), are not mapped and can be mapped manually later. You
can undo this operation by switching the environment and calling the menu function again.

12.5 Universal inputs, sensor type and input mode

With the ROBO Interface, each input has a fixed input type. To the AX input, only resistive sensors
can be attached. The ROBOTICS TXT Controller, by contrast, has 8 universal inputs 11-18, which
can be controlled by a ROBOPro program such that different sensor types can be attached. The
input mode is selected automatically with the sensor type. In older versions of ROBOPro it was
possible as well to select a sensor image for each input, but this had only an illustrative purpose
and no technical function. With the ROBOTICS TXT Controller it is important that you select the
right sensor type. Otherwise the input is not configured correctly.

In Level 4 and above, you can also change the input mode independently from the sensor type.

With the ROBO TX Controller, some sensors require different input modes, although they could all
be attached to the 11-18 inputs of the ROBO Interface. This applies mainly to the track
sensor, which requires the 10V digital input mode when used with the TX Controller. During
conversion of programs and when doing Interface independent programming, ROBOPro uses
the previous sensor image as sensor type in order to select the correct input mode.

12.6 Fast counter inputs and extended motor control

The ROBOTICS TXT Controller has 4 fast counter inputs C1-C4 and an integrated motor controller,
which allow for precise motor control. The extended motor control offers two functions, automatic

fischertechnik==x

ROBOPro

brake after a specified distance and synchronization of two motors. The motor control
system requires that the rotary encoder of motor M1 is connected to fast counter input C1 and so
forth.

When using the automatic brake mode, a number of pulses is specified and the control system
breaks the motor automatically when the target is reached. The control system also calculates the
braking distance of the motor and starts breaking early enough, so that the chosen distance is
reached exactly even with fast motors and high resolution rotary encoders.

When using the synchronization, two motors are controlled such that they make the same num-
ber of turns in the same time. This is most useful for track vehicles, which are going exactly
straight this way. If one motor becomes slower, the motor control system automatically slows down
the other motor.

You can also combine these two functions and let the motors go a defined number of pulses with
synchronized speed.
12.6.1 Encoder Motor (Level 1)

To comfortably control motors with built-in pulse generator or encoder, the
new programming element Encoder motor is available in level 1 and above.

M1 Dem
Mz =S

V=8 D=100

Using this element, you can either move one motor a defined number or
pulses, or two motors synchronized, with or without a predefined num-
ber of pulses. The program element offers the following control options:

If you want to move only one motor with a defined number PR TR TR Tr L 2|
of pulses, you choose the action distance and enter the (_Mt ELLE e
desired speed, direction and distance.

il F1 -

M2
U . t h t t M3 i~ Action:
sing action synchronous, you can move two motors g 5 B
speed synchronized. You can independently select the " Synchronous
direction for both motors. The speed is selectedonly . “: SRS
* Stop

once for both motors, since both motors shall turn equally & None

faSt (el Direction 1;

The action synchronous distance combines, as ex- (‘::j Direction 2:
plained above, a defined number of pulses with speed L—‘ ww o
synchronization of 2 motors. Speed (1..8): Distance (1,,32767):

. . . E 0 T
With action stop, you can stop both motors any time and !
also end speed synchronization and clear a remaining 0K Cancel

distance, if applicable. In case you start motors using this
element, you also have to stop them again with this
element before you can use the usual motor control elements again.

fischertechnike=x

ROBOPro

If you defined a distance, the element does not wait until the chosen dis-
tance is reached, but immediately continues with the next program element.
This way the program can continue and stop the motors in case of some
event. In order to test if the motor has reached its target, there are internal
inputs M1E to M4E, one for each motor. You can query these inputs using a
branch or a wait for input program element.

The inputs M1E to M14 become 1, if the corresponding motor had reached
the given number of pulses (distance). The inputs stay 1 until you
send a new distance command for the motor. For the wait element it is
therefore best to wait for 1 as in the picture. If you control two motors
synchronously, you need a wait element for the first motor only. In the case
of synchronously controlled motors the inputs become 1 when both motors
have reached their destination.

An example for using this element is shown in the section 4.4 Tango on page 3.

12.6.2 Extended Motor Control in Level 3
In level 3, a motor is controlled by sending commands to an orange motor element.

Using the command synchro-

nous, a motor can be

synchronized ~ with another c
motor. If, for example, you M2 synchron with M1 w

send the command synchronous Y50 'TJI\.M s
J :

Distance 50 pulses

with value 1 to motor 2, motor 2
is synchronized with motor 1.‘ IN Liection of rotation cw |‘-; 5 Q[I\:LIQ s
level 3, you can also synchronize
more than two motors. The
synchronization is cancelled, if
you send to a motor the
command synchronous with value
0.

With the distance command, you
can define a number of pulses to
go for a motor. As soon as this
number of pulses is reached, the
motor breaks. The defined dis-
tance can be cancelled at any time by sending a distance command with value 0.

Position reached?

Motors stop

Cancel distance command

Cancel synchronous command

If you want to combine synchronization with distance, you must send the distance command to
both motors. The Synchronous command is send to one motor only, though, with the number of
the other motor as command value.

Neither the synchronous nor the distance command actually starts the motor. For this you need
a left, right or = command.

You wait for a target reached condition in the same way as in level 1. Of course there are also
level 3 elements for the target reachedinputs.

fischertechnik==x

ROBOPro

After this, to control the motor with normal motor commands again, first you have to cancel the
distance and synchronous command again by sending a distance and a synchronous command
with the value 0. But previously, you must have sent the motor a stop command. The distance
and synchronous command only stop the motor as long as the commands are active. If you cancel
the commands without stopping the motor first, the motor carries on running.

12.7 Display

Similar to an operation panel, the display can be used to control a program or to output status data
on the display of the ROBOTICS TXT Controller. A display is designed in the TXT/TX Display tab
in the same way as on operation panel:

Main prograr |

Funiction I Symbol | Panel T= Display IPropertiesI Diescription

The available control elements are also the same as for an operation panel: a slider and a push
button. For displaying status data, a text display is available. For structuring the display area, there
is a line element and a rectangle element.

If you want to change the size of a control element, you can use the menu option Draw / Edit.

The connection between display elements and the program is done in the same way as for an
operation panel using input and output elements.

Panel \ Panel

ABC SR
Input Display

fischertechnik=

ROBOPro

=== Button 21
The monochrome display controls of the ROBO TX Con- Butbon bt [m

troller are operated via the two buttons on the interface.

) : lection crder: =
You can select different control elements by pressing the > ! =
left or right button shortly. If you press the left or right Pushbutton switch: [
button longer, the control element is modified. A slider Initially up (0): ;
H H Initially right down (1)

button slides, a push button is pushed. Inkiahy o donms (1: €
You need to assign in the property window of each control Mote 1: The "Button text” Fiekdis used to
element a selection order number. These numbers define access the buttan from an input element.
in which order the control elements are selected using the (e 24 Biplley s s i e

using the left or right button on the interface,
bUttOnS. The input value is 1 if the right butkon is used

and -1 if the left button is used.
[s]4 I Cancel

Important note: If you want to stop a program in download mode which uses the display
functions, you have to press both buttons simultaneously.

In the same way as every subprogram can have its own operation panel, every subprogram can
have its own display content. But there is a difference: the display contents changes automatically
if a subprogram is entered or left. This way it is possible to develop quite complex menu structures
without much effort. It is advisable to run all subprograms with display contents in a single process.
Otherwise it might become difficult to predict which display contents is shown in what situation.

fischertechnike==x

ROBOPro

13 Working with decimals

ROBOPro offers the option to work with decimals (also called decimal
fractions). This means that you can perform arithmetic operations not only =
with integer numbers like 1 or 2, but also with fractional numbers like
3.99482925 with a precision of 9 digits. The ROBO TX Controller uses so-
called floating point arithmetic to implement this feature. It can be used with = War PP
the ROBOTICS TXT Controller in online and download mode. The ROBO =l
Interface supports floating point arithmetic in online mode only.

Yar Int |
123

If you are interested in the details: The precision of arithmetic operations is 48 bits with a 32 bit
mantissa. This corresponds to a precision of slightly more than 9 decimal digits.

In Version 2.1.1.0, the following functions are supported:

o floating point variable
o floating point list

. Yariables x|
Marne:

Initial value: | 1.23

e operators +, -, ¥,/
e conversion integer / floating point and vice versa patatyge:

_| FP43 N> Inkeger -32767..32767
Iy This element is located in the element win- 0 e TN T

dow with the operators. Life time:
e branch element which compares a floating point and a :: o
constant ¥ Link variables by name
o text command with floating point formatting = | =e

There are no special floating point elements. Instead you can
switch the data type in the property window of the corresponding
integer element. Floating point elements are displayed with a thick border.

13.1 Comparing floating point numbers

There is no 3-way comparison element for floating point numbers. The reason is that floating point
numbers should not be compared for equality, because the value of a floating point number is
usually not exact cause of round of errors. For example with floating point numbers, the result of
10- 0.1 is not equal to 1, because 0.1 cannot be represented exactly with binary floating point
numbers.

You can compare a floating point number with a floating point constant using the level 3 compari-
son element. There will be comparison operators as well.

fischertechnike=x

ROBOPro

13.2

Since there is not as much space on the TX Display as on a computer monitor, ROBOPro offers
some options to display floating point numbers in a space saving way. The exponent is typically
displayed using the exponent notation common in technology, for example k for thousand as in km.
The exponent abbreviations are as follows:

Displaying floating point numbers

Abbreviation | Name | Exponent
a atto | 1018
f femto | 10-15
p pico |10-12
n nano |10
u micro | 10
m milli | 10-3
k kilo {103
M Mega | 106
G Giga |10°
T Tera [1012
P Peta |10
E Exa |108

In case the exponent is outside of this range, which mostly happens in case of calculation errors,
the error ?FORMAT? is displayed.

Of cause floating point numbers can be displayed using the notation more common with computers
and pocket calculators as well. The text command offers the following options:

Format Output 1 Output -0.01 | Output 1000
T __1.0000 __-0.0100 ?FORMAT?
T _ 1 _ 0 _1000

#H A _1.000 -10.00m _1.000k

HH S _1.000%00 _1.000v02 _1.000%03

HH} HHEHHHRE | _1.0000E+0000 | _1.0000E-0002 | _1.0000E+0003

fischertechnik==x

ROBOPro

Example:

_ T] m Two constants are added and the result is displayed for 5

seconds. Then the display is erased (entry of \c in the

= text command) and the word “End” is displayed.
Text

Please note the following hints regarding formatting:

e The number of valid digits as well as the number of digits
in the exponent can be varied in all formats.

e You can use a point or comma as decimal separator.

o In front of the point or comma, at least 2 # characters are
required, one for the sign and for the at least 1 digit in
front of the decimal separator.

ROBOPro uses the following codes to display special values and to flag error situations:

o 0is used to represent an exact zero (no error) or numbers that are less than approximately
+1(-2500,

e ?FORMAT? The number cannot be displayed using the chosen format.

e ?0VERFLOW? The calculation resulted in an arithmetic overflow. For example, division by
zero results in an overflow.

o ?NAN? Not A Number is the result of invalid calculations like square root of -1

e ?UNDEFINED? This value is e.g. used for subprogram inputs before they receive a value.

e ?LOST? s displayed for entries like 0/0 etc.

e ?CORRUPTED? This should never happen. If you have a program that shows this value,
please send it to the fischertechnik service.

e ?22.27? See below.

13.3 Calculation of Precision

In contrast to most other floating point systems, ROBOPro calculates in each operation also the
number of valid digits (or bits). Digits that were lost during computation are displayed in the text
output as “?“. For example, in ROBOPro the calculation 1.00000001 - 1.00000000 yields the result
9.877n. The difference would be exactly 0.00000001 or 10n. However, ROBOPro displays one
digit more than it can compute exactly. The last digit merely helps determine whether the value
should be rounded up or down, in this case from 9.8n to 10n. If you compute 1.0-1.0 in ROBOPro
the result is ??.??p. This means 0 with a precision of about 99.99p or 100p, that is 10 to the power
of -10. As previously mentioned, an exact 0 (without error) exists, but it is unusual.

fischertechnike=x

